Welcome to the Krita 4.4 Manual!

Welcome to Krita’s documentation page.

Krita is a sketching and painting program designed for digital artists. Our
vision for Development of Krita is —

Krita is a free and open source cross-platform application that offers an
end-to-end solution for creating digital art files from scratch. Krita is
optimized for frequent, prolonged and focused use. Explicitly supported
fields of painting are illustrations, concept art, matte painting, textures,
comics and animations. Developed together with users, Krita is an
application that supports their actual needs and workflow. Krita supports
open standards and interoperates with other applications.

Krita’s tools are developed keeping the above vision in mind. Although it has
features that overlap with other raster editors its intended purpose is to
provide robust tool for digital painting and creating artworks from scratch. As
you learn about Krita, keep in mind that it is not intended as a replacement
for Photoshop. This means that the other programs may have more features
than Krita for image manipulation tasks, such as stitching together photos,
while Krita’s tools are most relevant to digital painting, concept art,
illustration, and texturing. This fact accounts for a great deal of Krita’s
design.

You can download this manual as an epub here
[https://docs.krita.org/en/epub/KritaManual.epub].

https://docs.krita.org/en/epub/KritaManual.epub

User Manual Tutorials and Howto’s

Discover Krita’s features through an Learn through developer and user
online manual. Guides to help you generated tutorials to see Krita in
transition from other applications. action.

Reference Manual

Getting Started

A quick run-down of all of the

New to Krita and don’t know where to i
tools that are available.

start?

Krita FAQ

General Concepts

Find answers to the most common

Learn about general art and technology questions about Krita and what it
concepts that are not specific to Krita. offers.

Index

An index of the manual for
searching terms by browsing.

.

Resources

Textures, brush packs, and python
plugins to help add variety to your
artwork.

User Manual

Discover Krita’s features through an online manual. Guides to help you
transition from other applications.

Contents:

e Getting Started
Installation
o Starting Krita

o Basic Concepts
o Navigation
e Introduction Coming From Other Software
o Introduction to Krita coming from Photoshop

o Introduction to Krita coming from Paint Tool Sai
e Drawing Tablets

o What are Tablets?
Supported Tablets
Drivers and Pressure Sensitivity
Where it can go wrong: Windows
Wacom Tablets
o Supported Tablets
e [.oading and Saving Brushes
o The Brush settings drop-down
o Making a Brush Preset
o Sharing Brushes
e On-Canvas Brush Editor
e Mirror Tools
o Mirroring along a rotated line
¢ Painting with Assistants
o Types

o Setting up Krita for technical drawing-like perspectives
e Working with Images

o What do Images Contain?
o Metadata

o

O O O O

O O O O

(0]

Image size

Author and Description

Cropping and resizing the canvas
Resizing the canvas

Saving, Exporting and Opening Files

(0]

(¢]

(¢]

[]
O O O O

Saving, AutoSave and Backup Files

Saving
AutoSave

Backup Files

Templates

Comic Templates

Design Templates
DSLR templates

Texture Templates

Introduction to Layers and Masks

(¢]

(¢]

(0]

(0]

(0]

(0]

O O O O O o

(0]

Managing layers

Types of Layers
How are layers composited in Krita ?

Inherit Alpha or Clipping layers
Masks and Filters

Selections

Creating Selections
Editing Selections
Removing Selections

Display Modes
Global Selection Mask (Painting a Selection)

Selection from layer transparency
Pixel and Vector Selection Types

Common Shortcuts while Using Selections

e Python Scripting

(0]

(¢]

(¢]

Managing Python plugins
Introduction to Python Scripting
How to make a Krita Python plugin

e Tag Management

(0]

(0]

(0]

Adding a New Tag for a Brush

Assigning an Existing Tag to a Brush
Changing a Tag’s Name

(¢]

Deleting a Tag

Soft Proofing

(0]

Out of Gamut Warning

Vector Graphics

O O O O O

What are vector graphics?

Tools for making shapes

Arranging Shapes

Editing shapes

Working together with other programs

Snapping
Animation with Krita

(0]

O O O O

Animation curves
Workflow

Introduction to animation: How to make a walkcycle

Importing animation frames
Reference

Japanese Animation Template

(0]

(0]

(0]

Basic structure of its layers
Its layer contents

Basic steps to make animation

Gamut Masks

o
o
(¢]
(¢]

Selecting a gamut mask
In the color selector

Editing/creating a custom gamut mask
Importing and exporting

Getting Started

Welcome to the Krita Manual! In this section, we’ll try to get you up to
speed.

If you are familiar with digital painting, we recommend checking out the
Introduction Coming From Other Software category, which contains guides
that will help you get familiar with Krita by comparing its functions to other
software.

If you are new to digital art, just start with Installation, which deals with
installing Krita, and continue on to Starting Krita, which helps with making a
new document and saving it, Basic Concepts, in which we’ll try to quickly
cover the big categories of Krita’s functionality, and finally, Navigation,
which helps you find basic usage help, such as panning, zooming and
rotating.

When you have mastered those, you can look into the dedicated introduction
pages for functionality in the User Manual, read through the overarching
concepts behind (digital) painting in the General Concepts section, or just
search the Reference Manual for what a specific button does.

Contents:

Installation

Starting Krita
Basic Concepts

Navigation

Installation

Windows

Windows users can download Krita from the website, the Windows Store, or
Steam.

The versions on the Store and Steam cost money, but are functionally
identical [https:/krita.org/en/item/krita-available-from-the-windows-store/] to the (free)
website version. Unlike the website version, however, both paid versions get
automatic updates when new versions of Krita comes out. After deduction of
the Store fee, the purchase cost supports Krita development.

Website:
The latest version is always on our website [https:/krita.org/download/].

The page will try to automatically recommend the correct architecture
(64- or 32-bit), but you can select “All Download Versions” to get more
choices. To determine your computer architecture manually, go to
Settings » About. Your architecture will be listed as the System Type in
the Device Specifications section.

Krita by default downloads an installer EXE, but you can also download
a portable ZIP file version instead. Unlike the installer version, this
portable version does not show previews in Windows Explorer
automatically. To get these previews with the portable version, also
install Krita’s Windows Shell Extension extension (available on the
download page).

These files are also available from the KDE download directory
[https://download.kde.org/stable/krita/].

Windows Store:

For a small fee, you can download Krita from the Windows Store
[https://www.microsoft.com/store/productld/9N6X57ZGRW96]. This version requires

https://krita.org/en/item/krita-available-from-the-windows-store/
https://krita.org/download/
https://download.kde.org/stable/krita/
https://www.microsoft.com/store/productId/9N6X57ZGRW96

Windows 10.

Steam:

For a small fee, you can also download Krita from Steam
[https://store.steampowered.com/app/280680/Krita/].

To download a portable version of Krita go to the KDE
[https:/download.kde.org/stable/krita/] download directory and get the ZIP file instead
of the setup.exe installer.

Note

Krita requires Windows 7 or newer. The Store version requires Windows
10.

Linux

Many Linux distributions package the latest version of Krita. Sometimes you
will have to enable an extra repository. Krita runs fine under most desktop
enviroments such as KDE, Gnome, LXDE, Xfce etc. — even though it is a
KDE application and needs the KDE libraries. You might also want to install
the KDE system settings module and tweak the gui theme and fonts used,
depending on your distributions.

Nautilus/Nemo file extensions

Since April 2016, KDE’s Dolphin file manager shows KRA and ORA
thumbnails by default, but Nautilus and it’s derivatives need an extension.
We recommend Moritz Molch’s extensions for XCF, KRA, ORA and PSD
thumbnails [https://moritzmolch.com/1749].

Appimages

For Krita 3.0 and later, first try out the appimage from the website. 90% of
the time this is by far the easiest way to get the latest Krita. Just download

https://store.steampowered.com/app/280680/Krita/
https://download.kde.org/stable/krita/
https://moritzmolch.com/1749

the appimage, and then use the file properties or the bash command chmod to
make the appimage executable. Double click it, and enjoy Krita. (Or run it in
the terminal with ./appimagename.appimage)

e Open the terminal into the folder you have the appimage.
e Make it executable:

chmod a+x krita-3.0-x86_64.appimage

e Run Krita!

./krita-3.0-x86_64.appimage

Appimages are ISOs with all the necessary libraries bundled inside, that
means no fiddling with repositories and dependencies, at the cost of a slight
bit more disk space taken up (And this size would only be bigger if you were
using Plasma to begin with).

Ubuntu and Kubuntu

It does not matter which version of Ubuntu you use, Krita will run just fine.
However, by default, only a very old version of Krita is available. You
should either use the appimage, flatpak or the snap available from Ubuntu’s
app store. We also maintain a ppa for getting latest builds of Krita, you can
read more about the ppa and install instructions here
[https://launchpad.net/~kritalime/+archive/ubuntu/ppa].

OpenSUSE

The latest stable builds are available from KDE:Extra repo:

e https://download.opensuse.org/repositories/KDE:/Extra/

Note

Krita is also in the official repos, you can install it from Yast.

https://launchpad.net/~kritalime/+archive/ubuntu/ppa
https://download.opensuse.org/repositories/KDE:/Extra/

Fedora

Krita is in the official repos, you can install it by using packagekit
(Add/Remove Software) or by writing the following command in terminal.

dnf install krita

You can also use the software center such as gnome software center or
Discover to install Krita.

Debian

The latest version of Krita available in Debian is 3.1.1. To install Krita type
the following line in terminal:

apt install krita

Arch

Arch Linux provides krita package in the Extra repository. You can install
Krita by using the following command:

pacman -S krita

You can also find Krita pkgbuild in arch user repositories but it is not
guaranteed to contain the latest git version.

Flatpak

We also have Flatpak for nightlies and stable builds, these builds are not
maintained by the core developers themselves. You can either get the builds
from the KDE community website [https://binary-factory.kde.org] or from the
Flathub Maintainers [https:/flathub.org/apps/details/org.kde.krita].

To install flatpak build from the software centre just open the flatpakrepo
files with Discover or the software center provided by your distribution:

Flathub Repo [https://flathub.org/repo/flathub.flatpakrepo]

https://binary-factory.kde.org
https://flathub.org/apps/details/org.kde.krita
https://flathub.org/repo/flathub.flatpakrepo

KDE Flatpak Repo [https://distribute.kde.org/kdeapps.flatpakrepo]

After adding one of the above repos you can then search for Krita and the
software center will show you the flatpak version for installation.

If you prefer doing it from terminal you can use the following commands to
install Krita’s flatpak build

For KDE Flatpak Repo:

flatpak remote-add --if-not-exists kdeapps --from
https://distribute.kde.org/kdeapps.flatpakrepo

flatpak install kdeapps org.kde.krita

For installing it from Flathub Repo:

flatpak remote-add --if-not-exists flathub
https://flathub.org/repo/flathub.flatpakrepo

flatpak install kdeapps org.kde.krita
Snaps

There are snap packages provided by the ubuntu snap developers, these are
generally not up to date. The Krita Developers do not provide or build the
snap packages themselves. To install Krita as a snap package, first install
snapd application. Snapd is installed by default on ubuntu distributions.

If you are on ubuntu distribution then Krita’s snap package may show up in
the software center or you can run the following command in terminal

sudo snap install krita
Note

The Flatpak and Snap builds are not tested by the core developers of Krita,
so you may encounter some bugs while running Krita installed from them.

https://distribute.kde.org/kdeapps.flatpakrepo

OS X

You can download the latest binary from our website
[https://krita.org/download/krita-desktop/]. The binaries work only with Mac OSX
version 10.12 and newer.

Source

While it is certainly more difficult to compile Krita from source than it is to
install from prebuilt packages, there are certain advantages that might make
the effort worth it:

¢ You can follow the development of Krita on the foot. If you compile
Krita regularly from the development repository, you will be able to
play with all the new features that the developers are working on.

® You can compile it optimized for your processor. Most pre-built
packages are built for the lowest-common denominator.

e You will be getting all the bug fixes as soon as possible as well.

* You can help the developers by giving us your feedback on features as
they are being developed and you can test bug fixes for us. This is
hugely important, which is why our regular testers get their name in the
about box just like developers.

Of course, there are also some disadvantages: when building from the current
development source repository you also get all the unfinished features. It
might mean less stability for a while, or things shown in the user interface
that don’t work. But in practice, there is seldom really bad instability, and if it
is, it’s easy for you to go back to a revision that does work.

So... If you want to start compiling from source, begin with the latest build
instructions from the guide here.

If you encounter any problems, or if you are new to compiling software,
don’t hesitate to contact the Krita developers. There are three main
communication channels:

¢ irc: webchat.freenode.net, channel #krita

https://krita.org/download/krita-desktop/

e mailing list [https://mail kde.org/mailman/listinfo/kimageshop]
e forums [https://forum.kde.org/viewforum.php?f=136]

https://mail.kde.org/mailman/listinfo/kimageshop
https://forum.kde.org/viewforum.php?f=136

Starting Krita

When you start Krita for the first time there will be no canvas or new
document open by default. You will be greeted by a welcome screen, which
will have option to create a new file or open existing document. To create a
new canvas you have to create a new document from the File menu or by
clicking on New File under start section of the welcome screen. This will
open the new file dialog box. If you want to open an existing image, either
use File » Open... or drag the image from your computer into Krita’s
window.

nr
+ 3AVON 94 . m

CIE=RoiASEs Rulmf.

2
b A

s
N A
N

Creating a New Document

A new document can be created as follows.

[N

Click on File from the application menu at the top.

2. Then click on New. Or you can do this by pressing the ctrl + N
shortcut.

3. Now you will get a New Document dialog box as shown below:

D Custom Document Dimensions Content

Predefined: | A4 (300 ppi) A4 (300 ppi)
SN ket width: 2480 S pixels(px) ~ O O
@ Comic Templates

10| Design Templates

@ DSLR Templates Color

exture Templat...

~ | Depth: | B-bit integer/chan *~ | | Color Space Browser

tre.icc (Default)

Click on the Custom Document section and in the Dimensions tab choose A4
(300ppi) or any size that you prefer from the Predefined drop down To know
more about the other sections such as create document from clipboard and
templates see Create New Document.

Make sure that the color profile is RGB and depth is set to 8-bit
integer/channel in the color section. For advanced information about the color
and color management refer to Colors.

How to use brushes

Now, on the blank white canvas, just left click with your mouse or draw with
the pen on a graphic tablet. If everything’s correct, you should be able to
draw on the canvas! The brush tool should be selected by default when you

start Krita, but if for some reason it is not, you can click on this # icon
from the toolbox and activate the brush tool.

Of course, you’d want to use different brushes. On your right, there’s a
docker named Brush Presets (or on top, press the F6 key to find this one) with
all these cute squares with pens and crayons.

If you want to tweak the presets, check the Brush Editor in the toolbar. You
can also access the Brush Editor with the F5 key.

Tick any of the squares to choose a brush, and then draw on the canvas. To
change color, click the triangle in the Advanced Color Selector docker.

Erasing

There are brush presets for erasing, but it is often faster to use the eraser
toggle. By toggling the E key, your current brush switches between erasing
and painting. This erasing method works with most of the tools. You can
erase using the line tool, rectangle tool, and even the gradient tool.

Saving and opening files

Now, once you have figured out how to draw something in Krita, you may
want to save it. The save option is in the same place as it is in all other
computer programs: the top-menu of File, and then Save. Select the folder
you want to have your drawing, and select the file format you want to use
(.kra is Krita’s default format, and will save everything). And then hit Save.
Some older versions of Krita have a bug and require you to manually type the
extension.

If you want to show off your image on the internet, check out the Saving For
The Web tutorial.

Check out Navigation for further basic information, Basic Concepts for an
introduction as Krita as a medium, or just go out and explore Krita!

Basic Concepts

If this is your first foray into digital painting, this page should give you a
brief introduction to the basic but important concepts required for getting

started with digital painting in Krita.

Although very lengthy, this page tries to give a brief overview of some of the
Krita’s most important functionality; it tries to help you grasp the functions
of various menu and buttons in Krita without going into minute details.

Contents

e Basic Concepts

(0]

(¢]

O O O O O

Raster and Vector
Images, Views and Windows
= [mage
= View
= Dockers
= Window
Canvas in Krita
Layers and Compositing
Tools
Brush Engines
Colors

m ‘Transparency

m Blending modes
Masks

Filters

m Filter Brush Engine

m Filter Layers, Filter Masks and Layer Styles
Transformations

m Deform Brush Engine

m Transformation Masks
Animation with Krita

o Assistants, Grids and Guides
o (Customization

Raster and Vector

Even though Krita is regarded primarily a raster based application, it has
some vector editing capabilities as well. If you are new to digital painting
medium, it is necessary that you first get yourself acquainted with the
concepts of raster and Vector based images.

In digital imaging, a pixel (Picture Element) is a basic and lowest element of
an Image. It is basically a grid of points each displaying specific color. Raster
editing is manipulating and editing these pixels. For example when you take a
1-pixel brush which is colored black and painting on the white canvas in
Krita you are actually changing the color of the pixel beneath your brush
from white to black. When you zoom in and see a brush stroke you can notice
many small squares with colors, these are pixels:

BRUSH S5TROKE

Each pixel is
assigned a color

In contrast to raster images, vector graphic images are based on mathematical
expressions. They are independent of the pixels. For example, when you
draw a rectangle on a vector layer in Krita you are actually drawing paths
passing through points that are called nodes, which are located on specific
coordinates on the ‘x’ and ‘y’ axes. When you re-size or move these points
the computer calculates and redraws the path and displays the newly formed
shape to you. Hence you can re-size the vector shape to any extent without
any loss in quality. In Krita, everything which is not on a vector layer is raster

based.

Images, Views and Windows

In a painting program, there are three major containers that make up your
work-space.

Image
The most important one is the Image.

This is an individual copy of the image that you can open or create via the
file dialog. Krita allows you to open the file as a new copy via the File menu,
or to save it as a new file, or make an incremental copy.

An image contains data regarding layers, color space of image and layers,
canvas size and metadata such as creator, date created and DPI et cetera.
Krita can open multiple images at once, you can switch between them via the
Window menu.

Because the image is a working copy of the image on the hard drive, you can
do a lot of little saving tricks with it:

New
Makes a new image. When you press Save, you make a new file on the
hard drive.

Open...
Makes an internal copy of an existing image. When you press Save, you
will overwrite the original existing image with your working copy.

Open existing Document as Untitled Document...
Similar to Open..., however, Save will request you to specify a saving
location: you’re making a new copy. This is similar to Import... in other
programs.

Create Copy From Current Image

Similar to Open existing Document as Untitled Document... but with the
currently selected image.

Save Incremental Version
Allows you to quickly make a snapshot of the current image by making a
new file with a version number added to it.

These options are great for people doing production work, who need to
switch between files quickly or have backup files in case they do something
extreme. Krita also has a file backup system in the form of auto-saves,
backup files and crash recovery. You can configure the option for these
features in the general settings.

You view the image via a View.

View

A view is a window onto your image. Krita allows you to have multiple
views, and you can manipulate the view to zoom, rotate and mirror and
modify the color of the way you see an image without editing the image
itself. This is very useful for artists, as changing the way they view the image
is a common way to diagnose some common mistakes, like a drawing which
is skewed towards one side. Mirroring with the M key makes such skewing
easy to identify.

If you have trouble drawing certain curves you will enjoy using rotation for
drawing, and of course, there is zooming in and out for precision and rough
work.

<

DA
B .

EEAIE

+ 2AA¥O0ON 9

NS

14

S
[m]
o
n
2
o
o
[E]
>
»
N

Multiple views of the same image in Krita

Multiple views are possible in Krita via Window » New view » image name.
You can switch between them via the Window menu, or the ctrl + Tab
shortcut, or keep them in the same area when subwindow mode is active in
the settings, via Window » Tile.

Dockers

Dockers are little subwindows in Krita’s interface. They contain useful tools,
like the color selector, layer stack, tool options, et cetera.

The image above shows some of the dockers in Krita.

All the views and the dockers are held inside Windows.

Window

If you’ve used a computer before, you know what windows are: They are big
containers for your computer programs.

Krita allows you to have multiple windows via Window » New Window. You
can then drag this to another monitor for multi-monitor use.

The image below shows an example of multiple windows in Krita.

Aow: 1.00

Undo History

Opacity: 100%

RGB (8-bit inte..-V2-srgbtrc.ic

Canvas in Krita

When you create a new document in Krita for the first time you will see a

rectangular white area. This is called a canvas. You can see it in the image
below. The area marked by a red rectangle is a canvas.

¥ w - Unnamed - Krita
View Image

, | om
im -1

@ Unnamed

Undo History

WO

Opacity: 100%

% 4L+ 8AV

ol
o}
& X
m
b

4d_Fil-nopress tege jtre.ic 1000 x 1000 (7M)

When you save the painting as JPG, PNG et cetera or take a print out of the
painting, only the content inside this area is taken into consideration.
Anything beyond it is ignored. Krita does store information beyond this area,
you just won’t be able to see it. This data is stored in the Layers.

Layers and Compositing

Like a landscape painter will first paint the sky and then the furthest away
elements before slowly working his way to the foreground elements,
computers will do the same with all the things you tell them to draw. So, if
you tell them to draw a circle after a square on the same spot, the circle will

always be drawn later. This is called the Drawing Order.

The layer stack is a way for you to separate elements of a drawing and
manipulate the drawing order by showing you which layers are drawn when
and allowing you to change the order they are drawn in and also apply all
sorts of other effects. This is called Compositing.

This allows you to have line art above the colors, or trees before the
mountains, and edit each without affecting the other.

Krita has many layer-types, each layer type is unique and has its own
usecase:

Paint Layers
These are raster layers, and the most common and default layer type in
Krita, you will be painting on these.

Vector Layers
This is a layer type on which you draw vector graphics. Vector graphics
are typically more simple than raster graphics and with the benefit that
you can deform them with less blurriness.

Group Layers
These allow you to group several layers via drag and drop, so you can

organize, move, apply masks and perform other actions on them together.

Clone Layers
These are copies of the layer you selected when making them. They get
updated automatically when changing the original.

File Layers
These refer to an existing image outside of Krita and update as soon as

the outside image updates. Useful for logos and emblems that change a
lot.

Fill Layers
These layers are filled with something that Krita can make up on the fly,

like colors or patterns.

Filter Layer
These layers help us to apply some filters which will affect a composite
image made from all the layers beneath them.

You can manipulate the content of the layers with Tools.

Tools

Tools help you manipulate the image data. The most common one is of
course, the freehand brush, which is the default when you open Krita. There
are roughly five types of tools in Krita:

Paint Tools
These are tools for painting on paint layers. They describe shapes, like
rectangles, circles and straight lines, but also freehand paths. These
shapes then get used by the Brush engines to make shapes and drawing
effects.

Vector Tools
This is the upper row of tools, which are used to edit vectors.
Interestingly enough, all paint tools except the freehand brush allow you
to draw shapes on the vector layers. The resulting object won’t use the
brush preset for outline unlike the ones made with paint tools on normal
layer.

Selection Tools
Selections allow you to edit a very specific area of the layer you are
working on without affecting the others. The selection tools allow you to
draw or modify the current selection. This is like using masking-fluids in
traditional painting method, but whereas using masking fluids and film is
often messy and delicate, selections are far easier to use.

Guide Tools
These are tools like grids and assistants.

Transform Tools
These are tools that allow you to transform your layer or object on the

canvas.

All tools can be found in the toolbox, and information about individual tools
can be found in the tools section of the manual.

Brush Engines

Brush engines, as mentioned before, take a path and tablet information and
add effects to it, making a stroke.

Engine is a term Krita developers use to describe a complex interacting set of
code, that is the core for certain functionality and is highly configurable. In
short, like the engine of your car drives your car, and the type of engine and
its configuration affects how you use your car, the brush engine drives the
look and feel of the brush, and different brush engines have different results.

Krita has a LOT of different brush engines, all with different effects.

Left: pixel brush, Center: color smudge brush, Right: sketch brush.

For example, the pixel-brush engine is simple and allows you to do most of
your basic work, but if you do a lot of painting, the color smudge brush
engine might be more useful. Even though it’s slower to use than the Pixel
Brush engine, its mixing of colors allows you to work faster when you need
to blend and mix colors.

If you want something totally different from that, the sketch brush engine
helps with making messy lines, and the shape brush engine allows you to
make big flats quickly. There are a lot of cool effects inside Krita’s brush
engines, so try them all out, and be sure to check the chapters on each.

You can configure these effects via the Brush Settings drop-down, which can
be quickly accessed via the F5 key. These configurations can then be saved
into presets, which you can quickly access with the F6 key or the Brush
Presets docker.

Brushes draw with colors, but how do computers understand colors?

Colors

Humans can see a few million colors, which are combinations of
electromagnetic waves (light) bouncing off a surface, where the surface
absorbs some of it.

Subtractive CMY colors on the left and additive RGB colors on the right.
This difference means that printers benefit from color conversion before
printing.

When painting traditionally, we use pigments which also absorb the right
light-waves for the color we want it to have, but the more pigments you
combine, the more light is absorbed, leading to a kind of murky black. This is
why we call the mixing of paints subtractive, as it subtracts light the more
pigments you put together. Because of that, in traditional pigment mixing,
our most efficient primaries are three fairly light colors: Cyan blue and
Magenta red and Yellow (CMY).

A computer also uses three primaries and uses a specific amount of each
primary in a color as the way it stores color. However, a computer is a screen
that emits light. So it makes more light, which means it needs to do additive
mixing, where adding more and more colored lights result in white. This is
why the three most efficient primaries, as used by computers are Red, Green
and Blue (RGB).

Per pixel, a computer then stores the value of each of these primaries, with
the maximum depending on the bit-depth. These are called the components
or channels depending on who you talk to.

This is the red-channel of an image of a red rose. As you can see, the petals
are white here, indicating that those areas contain full red. The leaves are
much darker, indicating a lack of red, which is to be expected, as they are
green.

Though by default computers use RGB, they can also convert to CMYK (the
subtractive model), or a perceptual model like LAB. In all cases this is just a
different way of indicating how the colors relate to each other, and each time
it usually has 3 components. The exception here is grayscale, because the
computer only needs to remember how white a color is. This is why
grayscale is more efficient memory-wise.

In fact, if you look at each channel separately, they also look like grayscale
images, but instead white just means how much Red, Green or Blue there is.

Krita has a very complex color management system, which you can read
more about here.

Transparency

Just like Red, Green and Blue, the computer can also store how transparent a
pixel is. This is important for compesiting as mentioned before. After all,
there’s no point in having multiple layers if you can’t have transparency.

Transparency is stored in the same way as colors, meaning that it’s also a
channel. We usually call this channel the alpha channel or alpha for short.
The reason behind this is that the letter ‘a’ is used to represent it in
programming.

Some older programs don’t always have transparency by default. Krita is the
opposite: it doesn’t understand images that don’t track transparency, and will
always add a transparency channel to images. When a given pixel is
completely transparent on all layers, Krita will instead show a checkerboard
pattern, like the rose image shown above.

Blending modes

Because colors are stored as numbers you can do maths with them. We call
this Blending Modes or Compositing Modes.

Blending modes can be done per layer or per brush stroke, and thus are also
part of the compositing of layers.

Multiply
A commonly used blending mode is for example Multiply which
multiplies the components, leading to darker colors. This allows you to
simulate the subtractive mixing, and thus makes painting shadows much
easier.

Addition
Another common one is Addition, which adds one layer’s components to
the other, making it perfect for special glow effects.

Erasing
Erasing is a blending mode in Krita. There is no eraser tool, but you can
toggle on the brush quickly with the E key to become an eraser. You can
also use it on layers. Unlike the other blending modes, this one only
affects the alpha channel, making things more transparent.

Normal
The Normal blend mode just averages between colors depending on how
transparent the topmost color is.

Krita has 76 blending modes, each doing slightly different things. Head over
to the Blending Modes to learn more.

Because we can see channels as grayscale images, we can convert grayscale
images into channels. Like for example, we can use a grayscale image for the
transparency. We call these Masks.

Masks

Masks are a type of sub-effect applied to a layer, usually driven by a
grayscale image.

The primary types of mask are Transparency Masks, which allow you to use
a grayscale image to determine transparency, where black makes everything
transparent and white makes the pixel fully opaque.

You can paint on masks with any of the brushes, or convert a normal paint-
layer to a mask. The big benefit of masks is that you can make things
transparent without removing the underlying pixels. Furthermore, you can
use masks to reveal or hide a whole group layer at once!

For example, we have a white ghost lady here:

Layers

Mormal

Opacity: 100%
] . EI ghost lady

> WY

But you can’t really tell whether she’s a ghost lady or just really really white.
If only we could give the idea that she floats. We right-click the layer and add
a transparency mask. Then, we select that mask and draw with a black and
white linear gradient so that the black is below.

trans mask(remake me)

Wherever the black is, there the lady now becomes transparent, turning her
into a real ghost!

The name mask comes from traditional masking fluid and film. You may
recall the earlier comparison of selections to traditional masking fluid.
Selections too are stored internally as grayscale images, and you can save
them as a local selection which is kind of like a mask, or convert them to a
transparency mask.

Filters

We mentioned earlier that you can do maths with colors. But you can also do
maths with pixels, or groups of pixels or whole layers. In fact, you can make
Krita do all sorts of little operations on layers. We call these operations
Filters.

Examples of such operations are:

Desaturate
This makes all the pixels turn gray.

Blur
This averages the pixels with their neighbors, which removes sharp
contrasts and makes the whole image look blurry.

Sharpen
This increases the contrast between pixels that had a pretty high contrast
to begin with.

Color to Alpha
A popular filter which makes all of the chosen color transparent.

Different filter brushes being used on different parts of the image.

Krita has many more filters available: you can read about them here.

Filter Brush Engine

Because many of these operations are per pixel, Krita allows you to use the
filter as part of the Filter Brush Engine.

In most image manipulation software, these are separate tools, but Krita has it
as a brush engine, allowing much more customization than usual.

This means you can make a brush that desaturates pixels, or a brush that
changes the hue of the pixels underneath.

Filter Layers, Filter Masks and Layer Styles

Krita also allows you to let the Filters be part of the layer stack, via Filter
Layer and Filter Masks. Filter Layers affect all the layers underneath it in the
same hierarchy. Transparency and transparency masks on Filter Layers affect
where the layer is applied.

Masks, on the other hand, can affect one single layer and are driven by a
grayscale image. They will also affect all layers in a group, much like a
transparency mask.

We can use these filters to make our ghost lady look even more ethereal, by
selecting the ghost lady’s layer, and then creating a clone layer. We then right
click and add a filter mask and use gaussian blur set to 10 or so pixels. The
clone layer is then put behind the original layer, and set to the blending mode
‘Color Dodge’, giving her a definite spooky glow. You can keep on painting
on the original layer and everything will get updated automatically!

Opacity: 100%

clone_layer{remake me)

lens_blur_filter_layer(iremake ...

Layer Effects or Layer Styles are filter masks popularised by Photoshop's
that are a little faster than regular masks, but not as versatile. They are
available by right clicking a layer and selecting ‘layer style’.

Transformations

Transformations are kind of like filters, in that these are operations done on
the pixels of an image. We have a regular image and layer wide
transformations in the image and layer top menus, so that you may resize, flip
and rotate the whole image.

We also have the Crop Tool, which only affects the canvas size, and the
Move Tool which only moves a given layer. However, if you want more
control, Krita offers a Transform Tool.

Tool Options

[__‘ D B Free T

Filter: Bicubic

With this tool you can rotate and resize on the canvas, or put it in perspective.
Or you can use advanced transform tools, like the warp, cage and liquify,
which allow you to transform by drawing custom points or even by
pretending it’s a transforming brush.

Deform Brush Engine

Like the filter brush engine, Krita also has a Deform Brush Engine, which
allows you to transform with a brush. The deform is like a much faster
version of the Liquify transform tool mode, but in exchange, its results are of
much lower quality.

Apple transformed into a pear with liquify on the left and deform brush on
the right.

Furthermore, you can’t apply the deform brush as a non-destructive mask.
Transformation Masks

Like filters, transforms can be applied as a non-destructive operation that is
part of the layer stack. Unlike filter and transparency masks however,

transform masks can’t be driven by a grayscale image, for technical reasons.
You can use transform masks to deform clone and file layers as well.

Animation with Krita

From version 3.0 onwards, Krita got raster animation support. You can use
the timeline, animation and onionskin dockers, plus Krita’s amazing variety
of brushes to do raster based animations, export those, and then turn them
into movies or GIFs.

Assistants, Grids and Guides

With all this technical stuff, you might forget that Krita is a painting program.
Like how when working with traditional medium, as an illustrator, you can
have all sorts of equipment to make drawing easier, Krita also offers a variety
of tools:

|
I,

—

—
Ly, \=—
Sl

=

O
l

}
5
=

g |

/
=t

Krita’s vanishing point assistants in action.

Grids and Guides Docker
A very straightforward guiding tool which shows grids or guiding lines
that can be configured.

Snapping
You can snap to all sorts of things. Grids, guides, extensions, orthogonals,

image centers and bounding boxes.

Painting with Assistants

Because you can hardly put a ruler against your tablet to help you draw,
the assistants are there to help you draw concentric circles, perspectives,
parallel lines and other easily forgotten but tricky to draw details. Krita
allows you to snap to these via the tool options as well.

These guides are saved into Krita’s native format, which means you can pick
up your work easily afterward.

Customization

This leads to the final concept: customization.

In addition to rearranging the dockers according to your preferences, Krita
provides and saves your configurations as Workspaces. This is the button at
the top right.

You can also configure the toolbar via Settings » Configure Toolbars..., as
well as the shortcuts under both Settings » Configure Krita... » Shortcuts and
Settings » Configure Krita... » Canvas Input Settings.

Navigation

Interface

Krita’s interface is very flexible and provides an ample choice for the artists
to arrange the elements of the workspace. An artist can snap and arrange the
elements, much like snapping together Lego blocks. Krita provides a set of
construction kit parts in the form of Dockers and Toolbars. Every set of
elements can be shown, hidden, moved and rearranged that let the artists
easily customize their own user interface experience.

A Tour of the Krita Interface

As we’ve said before, the Krita interface is very malleable and the way that
you choose to configure the work surface may not resemble those shown
below, but we can use these as a starting point.

0 |
O |

c (o

e A — Traditional File or action menu found in most windowed
applications.

e B — Toolbar - This is where you can choose your brushes, set parameters
such as opacity and size and other settings.

e C — Sidebars for the Movable Panels/Dockers. In some applications,
these are known as Dockable areas. Krita also allows you to dock panels
at the top and/or bottom as well.

e D — Status Bar - This space shows the preferred mode for showing
selection i.e. marching ants or mask mode, your selected brush preset,
Color Space, image size and provides a convenient zoom control.

¢ E - Floating Panel/Docker - These can be “popped” in and out of their
docks at any time in order to see a greater range of options. A good
example of this would be the Preset Docker or the Palette Docker.

Your canvas sits in the middle and unlike traditional paper or even most
digital painting applications, Krita provides the artist with a scrolling canvas
of infinite size (not that you’ll need it of course!). The standard navigation
tools are as follows:

Navigation

Many of the canvas navigation actions, like rotation, mirroring and zooming
have default keys attached to them:

Panning

This can be done through ./, space + ./ and the directional keys.

Zooming
Discrete zooming can be done through + and - keys. Using the ctrl +

Space or ctrl + “_/ shortcuts can allow for direct zooming with the
stylus.

Mirroring
You can mirror the view can be quickly done via M key. Mirroring is a
great technique that seasoned digital artists use to quickly review the
composition of their work to ensure that it “reads” well, even when

flipped horizontally.

Rotating
You can rotate the canvas without transforming. It can be done with the
ctrl + [shortcutor 4 key and the other way with :kbd: Ctrl +]
shortcut or 6 key. Quick mouse based rotation is the Shift + Space and

shift + ./ shortcuts. To reset rotation use the 5 key.

You can also find these under View » Canvas.

Dockers

Krita subdivides many of its options into functional panels called Dockers
(also known as Docks).

Dockers are small windows that can contain, for example, things like the
layer stack, Color Palette or list of Brush Presets. Think of them as the
painter’s palette, or his water, or his brush kit. They can be activated by
choosing the Settings menu and the Dockers sub-menu. There you will find a
long list of available options.

Dockers can be removed by clicking the x in the upper-right of the docker-
window.

Dockers, as the name implies, can be docked into the main interface. You can
do this by dragging the docker to the sides of the canvas (or top or bottom if
you prefer).

Dockers contain many of the “hidden”, and powerful, aspects of Krita that
you will want to explore as you start delving deeper into the application.

You can arrange the dockers in almost any permutation and combination
according to the needs of your workflow, and then save these arrangements
as Workspaces.

Dockers can be prevented from docking by pressing the ctrl key before
starting to drag the docker.

Sliders

Krita uses these to control values like brush size, opacity, flow, Hue,
Saturation, etc... Below is an example of a Krita slider.

Opacity: 0.62

The total range is represented from left to right and blue bar gives an
indication of where in the possible range the current value is. Clicking
anywhere, left or right, of that slider will change the current number to
something lower (to the left) or higher (to the right).

To input a specific number, ‘.’ the slider. A number can now be entered
directly for even greater precision.

Pressing the shift key while dragging the slider changes the values at a
smaller increment, and pressing the ctrl key while dragging the slider
changes the value in whole numbers or multiples of 5.

Toolbars

Opacity: 1.00

Toolbars are where some of the important actions and menus are placed so
that they are readily and quickly available for the artist while painting.

You can learn more about the Krita Toolbars and how to configure them in
over in the Toolbars section of the manual. Putting these to effective use can
really speed up the Artist’s workflow, especially for users of Tablet-Monitors
and Tablet-PCs.

Workspace Chooser

The button on the very right of the Toolbar is the workspace chooser. This
allows you to load and save common configurations of the user interface in
Krita. There are a few common workspaces that come with Krita.

D—» Workspace chooser button

Pop-up Palette

Pop-up Palette is a feature unique to Krita, designed to increase the
productivity of the artist. It is a circular menu for quickly choosing brushes,
foreground and background colors, recent colors while painting. To access

the palette you have to just @ on the canvas. The palette will spawn at the
position of the brush tip or cursor.

By tagging your brush presets you can add particular sets of brushes to this
palette. For example, if you add some inking brush presets to inking tag you
can change the tags to inking in the pop-up palette and you’ll get all the
inking brushes in the palette.

You can tag brush presets via the Preset Docker, check out the resource

overview page to know more about tagging in general.

If you call up the pop-up palette again, you can click the tag icon, and select
the tag. In fact, you can make multiple tags and switch between them. When
you need more than ten presets, go into Settings » Configure Krita... »
General » Miscellaneous » Number of Palette Presets and change the number
of presets from 10 to something you feel comfortable.

Introduction Coming From Other
Software

KTrita is not the only digital painting application in the world. Because we
know our users might be approaching Krita with their experience from using
other software, we have made guides to illustrate differences.

Contents:

e Introduction to Krita coming from Photoshop

o Introduction
o Krita Basics
What Krita Has Over Photoshop
What Krita Does Not Have
o Conclusion
e Introduction to Krita coming from Paint Tool Sai
o How do you do that in Krita?
What do you get extra when using Krita?
What does Krita lack compared to Paint Tool Sai?
Conclusion

(0]

(0]

O O O

Introduction to Krita coming from
Photoshop

Introduction

This document gives an introduction to Krita for users who have been using
Photoshop. The intention is to make you productive in Krita as fast as
possible and ease the conversion of old habits into new ones. This
introduction is written with Krita version 2.9 and Photoshop CS2 and CS3 in
mind. But even though things may change in the future, the basics will most
likely remain the same. The first thing to remember is that Krita is a 2D paint
application while Photoshop (PS) is an image manipulation program. This
means that PS has more features than Krita in general, but Krita has the tools
that are relevant to digital painting. When you get used to Krita, you will find
that Krita has some features that are not part of PS.

Krita Basics

This chapter covers how you use Krita in the basic operations compared to
PS.

View and Display

Navigation

In Krita you can navigate your document using all these methods:

1. ‘Mouse wheel’: ./ down and up for zoom, and press -/ down to pan
your document.

2. ‘Keyboard’: with the + and - keys on your numpad keyboard.

3. As in Photoshop, Painter, Manga Studio: use the Ctrl + Space shortcut
to zoom, and the Space key to pan.

Note

If you add use the Alt key and so doactrl + Alt + Space
shortcut you’ll have a discrete zoom.

Rotation

Rotate the canvas with the shift + Space, or Ctrl + [and Ctrl +]
shortcuts or with the 4 or 6 keys. Reset the rotation with the 5 key.

Mirror
Press the M key to see your drawing or painting mirrored in the viewport.
Move and Transform

Moving and Transformation of contents is done using tools in Krita. You can
then find them in the toolbar. If you are familiar with the way to move layers
in PS by holding down the ctr1 key, you can do the same in Krita by
pressing the T key for the move tool (think “T’ranslate) or the Ctrl + T
shortcut for transform tool.

Press the B key to go back to the brush tool when the transformation or
translation is done. To find how to make advanced deformations using the
Transform tool, do not right-click on the on-canvas widget: all the option are
in the Tool Options docker.

Changes can be applied with the Enter key for the Transform tool.

Note

Move tool changes are auto-applied.

Selections

Like in PS, you can use the Alt or Shift keys during a selection to remove or
add selection to the active selection. Krita also offers sub tools for this, and
you can select them in the Tool Options if a select tool is active. These sub
tools are represented as icons. You can switch to those sub modes by

pressing:

R to replace selection

T to intersect

A to add to the selection (this is the one you will want to use often)
S to subtract from the selection (the other one popular)

Or hold:

e Alt to subtract from the selection
e Shift to add to the selection
e Alt + Shift to intersect

Note

You cannot press the ctrl key to move the content of the selection (you
have to press the T key or select the Move Tool).

Some other tips:

e If you want to convert a layer to a selection (to select the visible pixels),
right-click on the layer docker, and choose Select Opaque.

e If you use a polygonal selection tool, or a selection which needs to be
‘closed’, you will be able to do it or by using a double-click, or by using

a shift + “_/ shortcut.

You can scale selection. To do this, choose Select » Scale.

Note

Also, in the Select menu there are more classical options to grow, shrink,
feather, border, etc.

If you enable Show Global Selection Mask (Select menu) you can
scale/rotate/transform/move or paint on selection like on regular grayscale
layer.

e Ctrl + H: Show / Hide selection (same shortcut)

e Ctrl + A: Select All

e Ctrl + Sshift + A:deselect All (and not the ctrl + D shortcut as in
PS)

Note for Gimp user: Krita auto-expands and auto defloats new layers created
from a selection after pressing the Ctrl + C, Ctrl + V shortcuts so you do
not have to worry about not being able to paint outside the pasted element.

Note

This doesn’t work as intended right now. Intersect is a selection mode
which use the T key as the shortcut. However the T key is also used to
switch to the Move tool so this shortcut is not functional right now. You
have to use the button on the Tool Options.

Layer Handling

The most common default shortcuts are very similar in PS and Krita:

e Ctrl + J:duplicate

e Ctrl + E: merge down

e ctrl + shift + E: flattens all (not the ctrl + shift + M shortcut as
in PS)

e Ins: insert a new paint layer

e Cctrl + G:create new layer group and move selected layers to this group

Groups and Blending Mode (Composite Mode):

The group blending mode in Krita has priority over child layers and overrides
it. This can be surprising for Photoshop users. On Photoshop you can use
groups to just clean your layer stack and keep blending mode of your layer
compositing through all the stack. In Krita the compositing will happen at
first level inside the group, then taking into account the blending mode of the
group itself. Both systems have pros and cons. Krita’s way is more
predictable according to some artists, compositing-wise. The PS way leads to
a cleaner and better ordered layer stack visually wise.

Multi Layer Transform or Move

You can select multiple layers on the stack by holding down the shift key as
in PS, and if you move the layer inside a group you can move or transform
the whole group - including doing selection on the group and cut all the sub
layers inside on the fly. You can not apply filters to group to affect multiple
layers.

Clipping Masks

Krita has no clipping mask, but there is a simpler workaround involving layer
groups and Inherit alpha (see the alpha icon). Place a layer with the shape
you want to clip the other with at the bottom of a group and layers above with
the Inherit alpha option. This will create the same effect as the “clipping
mask” PS feature, and also keeps the layer stack cleaner than the clipping
mask implementation does.

This process of arranging groups for inherit alpha can be done automatically
by ctrl + shift + G shortcut. It creates a group with base layer and a layer
above it with inherit alpha option checked by default.

Pass-through mode

This is available in Krita, but not implemented as a blending mode. Rather, it
is an option next to ‘inherit alpha’ on group layers.

Smart Layers

Instead of having smart layers that you can do non-destructive transforms on,
Krita has the following set of functionality:

File Layers
These are layers which point to an outside file, and will get automatically
updated if the outside file changes. Starting from version 4.0 users can

convert an existing layer into a file layer by ./ clicking on it and doing
Convert » to File Layer or by going to Layer » Convert » to File Layer. It
will then open a save prompt for the file location and when done will save
the file and replace the layer with a file layer pointing at that file.

Clone Layers
These are layers that are an ‘instance’ of the layer you had selected when
creating them. They get updated automatically when the original layer
updates.

Transform Masks
These can be used to non-destructive transform all layer types, including
the file and clone layers.

Filter Masks
Like adjustment layers, these can apply filters non-destructively to all
layer types, including file and clone layers.

Layer styles

You can apply Photoshop layerstyles in Krita by right clicking any given
layer type and selecting ‘layer style’ from the context menu. Krita can open
and save ASL files, but not all layer style functionality is there yet.

Other

Layers and groups can be exported. See the Layer top menu for this and
many other options.

Note

Krita has at least 5 times more blending modes than PS. They are sorted by
categories in the drop-down menu. You can use the checkbox to add your
most used to the Favorite categories.

Paint tools

This is Krita’s strong point. There are many paint tools and they have a lot of
options.

Tools

In Krita, there is a totally different paradigm for defining what ‘tools’ are
compared to PS. Unlike in PS, you will not find the brush, eraser, clone, blur
tool, etc. Instead, you will find a way to trace your strokes on the canvas:
freehand, line, rectangle, circle, multiple brush, etc. When you have selected
the ‘way to trace’ you can choose the way to paint: erasing / cloning /
blurring, etc are all part of way it paint managed by the brush-engines
options. These brush engine options are saved into so-called presets, which
you can find on Brush presets. You can fine tune, and build your own presets
using the Edit Brush Settings icon on the top tool bar.

Erasing

In Krita, the eraser is not its own tool; it is a Blending mode (or Composite
mode). You can toggle between erase mode and paint mode by pressing the E
key, individually for each of your brushes.

Useful shortcuts

e shift: Grow or Shrink the brush size (or the [and] keys).

e /: Switch last preset selected and current (ex: a pencil preset, and an
eraser preset).

e Kand L: Increment Darker and Lighter value of the active color.

I and 0: Increment opacity plus or minus.

D: Reset color to black/foreground and white/background.

X: Switch background and foreground colors.

shift + I/shift + N/shift + M: A set of default keyboard shortcuts
for accessing the on-canvas color selector.

Note

Some people regard these shortcuts as somewhat unfortunate. The reason is
that they are meant to be used during painting and the left shift key is at
the opposite end of the keyboard from the I, M and N keys. So for a right-
handed painter, this is very difficult to do while using the stylus with a right
hand. Note that you can reassign any shortcut by using the shortcut
configuration in Settings » Configure Krita... » Shortcuts.

Stabilization / Path Smoothing

Using the freehand ‘paint with brush’ tool that you can find on the Tool
Options, more settings for smoothing the path and stabilization of your brush
strokes are available.

Global pressure curve

If you find the feeling of Krita too hard or too soft regarding the pressure
when you paint, you can set a softer or harder curve here: Settings »
Configure Krita... » Tablet settings

Adjustment

Like in PS, you can use the classic filters to adjust many things while
painting:

e Ctrl + L: Levels
e Ctrl + U: HSV adjustment
e Ctrl + I:Invert

Dodge / Burn / Blur Tools

Unlike Photoshop, where these are separate tools, in Krita, they are available
via the Filter Brush Engine, which allows you to apply the majority of Krita’s
filters in brush form.

Themes

If you don’t like the dark default theme of Krita go to: Settings » Themes, and
choose a brighter or darker theme. If you don’t like the color outside your
viewport go to: Settings » Configure Krita... » Display, and change the
Canvas border color.

What Krita Has Over Photoshop

As mentioned in the introduction, Krita is a specialized paint application.
Thus, it has specialized tools for painting. Similar tools are not found in more
generalized image manipulation applications such as PS. Here is a short list
of the most important ones.

Brush Engines

Krita has a lot of different so-called brush engines. These brush engines
define various methods on how the pixels end up on your canvas. Brush
engines with names like Grid, Particles, Sketch and others will bring you new
experiences on how the brushes work and a new landscape of possible
results. You can start customizing brushes by using the brush-settings editor,
which is accessible via the toolbar, but it’s much easier to just press the F5
key.

Tags for brush presets
This is a very useful way to configure brush presets. Each brush can have any

amount of tags and be in any group. You can make tag for blending brushes,
for texture brushes, for effect brushes, favorites etc.

Settings curves

You can set setting to pressure (speed/distance/tilt/random/etc.) relation for
each brush setting.

v Enable Pen Settings
v Share curve
' Pressure
Pressureln
X-Tilt
¥-Tilt

Tilt direction

Tilt elevation

Tangential pressure

The Pop-up Palette

Easily to be found on @ , the pop-up palette allows you to quickly access
brushes, color history and a color selector within arm’s reach. The brushes
are determined by tag, and pressing the lower-right configure button calls a
drop-down to change tags. This allows you to tag brushes in the preset docker
by workflow, and quickly access the right brushes for the workflow you need
for your image.

Transformations

The Krita transformation tool can perform transformations on a group and
affect child layers. There are several modes, like free, perspective, warp, the
powerful cage and even liquify. Furthermore, you can use transformation
masks to apply transforms non-destructively to any layer type, raster, vector
group, you name it.

EVLE,! NN S_:I E - E

Transform masks allows non-destructive transforms

Incremental Save

You can save your artwork with the pattern : myartworksname_001.kra,
myartworksname_002.kra, myartworksname_003.kra etc., by pressing a
single key on the keyboard. Krita will increment the final number if the

pattern “_XXX” is recognized at the end of the file’s name.

L
T

2012-08-24_ 2012-08-24_ 2012-08-24_ 2012-08-24_
housetree house-tree housedree house-tree_
002.png 003.png 004, png 005.png

This feature allows you to avoid overwriting your files, and keep track to
your older version and work in progress steps.

Filter: Color to alpha

If you want to delete the white of the paper from a scanned artwork, you can
use this filter. It takes a color and turns it into pure transparency.

Filter: Color to Alpha — Krita

Default

Many Blending Modes

If you like using blending modes, Krita has many of them — over 70! You

have plenty of room for experimentation. A special system of favorite
blending modes has been created to let you have fast access to the ones you
use the most.

Painting Assistants

Krita has many painting assistants. This is a special type vector shapes with a
magnetic influence on your brush strokes. You can use them as rulers,
including with shapes other than just straight.

— =T -
: D ey _—)
_-\-"--.
\@\ g 1
=

=

O
l

|

= |

Krita’s vanishing point assistants in action

Multibrushes: Symmetry / Parallel / Mirrored / Snowflake

Krita’s Multibrush tool allows you to paint with multiple brushes at the same
time. Movements of the brushes other than the main brush is created by
mirroring what you paint, or by duplicating it by any number around any
axis. They can also be used in parallel mode.

A Wide Variety of Color Selectors

The Advanced Color Selector docker offer you a wide choice of color
selectors.

View dependent color filters

Using the LUT docker, Krita allows you to have a separate color correction
filter per view. While this is certainly useful to people who do color
correction in daily life, to the artist this allows for seeing a copy of the image
in luminance grayscale, so that they instantly know the values of the image.

Using the LUT docker to change the colors per view

HDR color painting

This same LUT docker is the controller for painting with HDR colors. Using
the LUT docker to change the exposure on the view, Krita allows you to paint
with HDR colors, and has native OpenEXR support!

Landscape_kritaflatten.ex

Painting with HDR colors

What Krita Does Not Have

Again, Kirita is a digital paint application and Photoshop is an image
manipulation program with some painting features. This means that there are
things you can do in PS that you cannot do in Krita. This section gives a short
list of these features.

Filters

Krita has a pretty impressive pack of filters available, but you will probably
miss one or two of the special filters or color adjustment tools you often use
in Photoshop. For example, there is no possibility to tweak a specific color in

HSV adjustment.

Automatic healing tool
Krita does not have an automatic healing tool. It does, however, have a so-

called clone tool which can be used to do a healing correction, although not
automatically.

Macro Recording

Macro recording and playback exists in Krita, but it is not working well at
this time.

Text Tool

The text tool in Krita is less advanced than the similar tool in Photoshop.

Blending Modes While Transforming

When you transform a layer or a selection in Krita, the transformation
appears on the top of your layer stack ignoring the layer blending mode.

Photomerge

You may have used this tool in Photoshop to seamlessly and automatically
stitch together a drawing that was scanned in segments. Krita does not have
an equivalent, though an alternative is to use Hugin, which is cross-platform
and free, just like Krita.

Hugin Website [http://hugin.sourceforge.net]

Tutorial for Using Scans in Hugin [https://www.davidrevoy.com/article314/autostiching-
scan-with-hugin]

Other

Also, you cannot ‘Export for web’, ‘Image Ready’ for GIF frame or slicing

http://hugin.sourceforge.net
https://www.davidrevoy.com/article314/autostiching-scan-with-hugin

web image, etc.

Conclusion

Using these tips you will probably be up to speed with Krita in a short time.
If you find other things worth mentioning in this document we, the authors,
would be interested in hearing about them. Krita develops fast, so we believe
that the list of things possible in Photoshop but not in Krita will become
shorter in time. We will maintain this document as this happens.

Introduction to Krita coming from
Paint Tool Sai

How do you do that in Krita?

This section goes over the functionalities that Krita and Paint Tool Sai share,
but shows how they slightly differ.

Canvas navigation

Krita, just like Sai, allows you to flip, rotate and duplicate the view. Unlike
Sai, these are tied to keyboard keys.

Mirror
This is tied to M key to flip.

Rotate
There’s a couple of possibilities here: either the 4 and 6 keys, or the ctrl
+ [and ctrl +] shortcuts for basic 15 degrees rotation left and right.
But you can also have more sophisticated rotation with the shift +

Space + dragor Shift + -/ + drag shortcuts. To reset the rotation,
press the 5 key.

Zoom

You can use the + and - keys to zoom out and in, or use the ctrl + ./
shortcut. Use the 1, 2 or 3 keys to reset the zoom, fit the zoom to page or
fit the zoom to page width.

You can use the Overview docker in Settings » Dockers to quickly navigate
over your image.

You can also put these commands on the toolbar, so it’ll feel a little like Sai.

Go to Settings » Configure Toolbars... menu item. There are two toolbars,
but we’ll add to the Main Toolbar.

Then, you can type in something in the left column to search for it. So, for
example, ‘undo’. Then select the action ‘undo freehand stroke’ and drag it to
the right. Select the action to the right, and click Change text. There, toggle
Hide text when toolbar shows action alongside icon to prevent the action
from showing the text. Then press OK. When done right, the Undo should
now be sandwiched between the save and the gradient icon.

You can do the same for Redo, Deselect, Invert Selection, Zoom out, Zoom
in, Reset zoom, Rotate left, Rotate right, Mirror view and perhaps Smoothing:
basic and Smoothing: stabilizer to get nearly all the functionality of Sai’s top
bar in Krita’s top bar. (Though, on smaller screens this will cause all the
things in the Brushes and Stuff Toolbar to hide inside a drop-down to the
right, so you need to experiment a little).

Hide Selection, Reset Rotation are currently not available via the Toolbar
configuration, you’ll need to use the shortcuts ctrl + H and 5 to toggle these.

Note

Krita 3.0 currently doesn’t allow changing the text in the toolbar, we’re
working on it.

Right click color picker

You can actually set this in Settings » Configure Krita... » Canvas input
settings » Alternate invocation. Just double-click the entry that says Ctrl +

./ shortcut before Pick Foreground Color from Merged Image to get a
window to setitto /.
Note

Krita 3.0 actually has a Paint-tool Sai-compatible input sheet shipped by

default. Combine these with the shortcut sheet for Paint tool Sai to get most
of the functionality on familiar hotkeys.

Stabilizer

This is in the tool options docker of the freehand brush. Use Basic Smoothing
for more advanced tablets, and Stabilizer is much like Paint Tool Sai’s. Just
turn off Delay so that the dead-zone disappears.

‘Transparency

So one of the things that throw a lot of Paint Tool Sai users off is that Krita
uses checkers to display transparency, which is actually not that uncommon.
Still, if you want to have the canvas background to be white, this is possible.
Just choose Background: As Canvas Color in the new image dialogue and the
image background will be white. You can turn it back to transparent via
Image » Image Background Color and Transparency... menu item. If you
export a PNG or JPG, make sure to uncheck Store alpha channel
(transparency) and to make the background color white (it’s black by
default).

Filter: Color to Alpha — Krita]

Default ~ | Edit Presets

Like Sai, you can quickly turn a black and white image to black and
transparent with the Filter: Color to Alpha dialog under Filters » Colors »
Color to Alpha... menu item.

Brush Settings

Another, somewhat amusing misconception is that Krita’s brush engine is not
very complex. After all, you can only change the Size, Flow and Opacity
from the top bar.

This is not quite true. It’s rather that we don’t have our brush settings in a
docker but a drop-down on the toolbar. The easiest way to access this is with
the F5 key. As you can see, it’s actually quite complex. We have more than a
dozen brush engines, which are a type of brush you can make. The ones you
are used to from Paint Tool Sai are the Pixel Brush (ink), The Color Smudge
Brush (brush) and the filter brush (dodge, burn).

A simple inking brush recipe for example is to take a pixel brush, uncheck
the Enable Pen Settings on opacity and flow, and uncheck everything but size
from the option list. Then, go into brush-tip, pick Auto Brush from the tabs,
and set the size to 25 (right-click a blue bar if you want to input numbers),
turn on anti-aliasing under the brush icon, and set fade to 0.9. Then, as a final
touch, set spacing to ‘auto’ and the spacing number to 0.8.

You can configure the brushes in a lot of detail, and share the packs with
others. Importing of packs and brushes can be done via the Settings » Manage
Resources. .., where you can import .bundle or . kpp files.

Erasing

Erasing is a blending mode in Krita, much like the transparency mode of
Paint Tool Sai. It’s activated with the E key or you can select it from the
Blending Mode drop-down box.

Blending Modes

Krita has a lot of Blending modes, and thankfully all of Paint Tool Sai’s are
amongst them except binary. To manage the blending modes, each of them
has a little check-box that you can tick to add them to the favorites.

Multiple, Screen, Overlay and Normal are amongst the favorites. Krita’s
Luminosity is actually slightly different from Paint Tool Sai’s and it replaces
the relative brightness of color with the relative brightness of the color of the
layer.

Sai’s Luminosity mode (called Shine in Sai2) is the same as Krita’s
Luminosity/Shine (SAI) mode, which is new in Krita 4.2.4. The Sai’s Shade
mode is the same as Color Burn and Hard Mix is the same as the Luminosity
and Shade modes.

Layers

Lock Alpha
This is the checker box icon next to every layer.

Clipping group
For Clipping masks in Krita you’ll need to put all your images in a single
layer, and then press the ‘a’ icon, or press the Ctrl + Shift + G
shortcut.

Ink layer
This is a vector layer in Krita, and also holds the text.

Masks
These grayscale layers that allow you to affect the transparency are called
transparency masks in Krita, and like Paint Tool Sai, they can be applied
to groups as well as layers. If you have a selection and make a
transparency mask, it will use the selection as a base.

Clearing a layer
This is under Edit » Clear, but you can also just press the Del key.

Mixing between two colors

If you liked this docker in Paint Tool Sai, Krita’s Digital Color Selector
docker will be able to help you. Dragging the sliders will change how much
of a color is mixed in.

What do you get extra when using Krita?

More brush customization

You already met the brush settings editor. Sketch brushes, grid brushes,
deform brushes, clone brushes, brushes that are textures, brushes that respond
to tilt, rotation, speed, brushes that draw hatches and brushes that deform the
colors. Krita’s variety is quite big.

More color selectors
You can have HSV sliders, RGB sliders, triangle in a hue ring. But you can

also have HSI, HSL or HSY" sliders, CMYK sliders, palettes, round
selectors, square selectors, tiny selectors, big selectors, color history and

shade selectors. Just go into Settings » Configure Krita... » Color Selector
Settings » Color Selector tab, select an option in the Docker: drop-down box,
to change the shape and type of your main color selector.

You can call the color history with the H key, common colors with the U key
and the two shade selectors with the shift + N and shift + M shortcuts. The
big selector can be called with the shift + I shortcut on canvas.

Geometric Tools
Circles, rectangles, paths, Krita allows you to draw these easily.
Multibrush, Mirror Symmetry and Wrap Around

These tools allow you to quickly paint a mirrored image, mandala or tiled
texture in no time. Useful for backgrounds and abstract vignettes.

Assistants

The painting assistants can help you to set up a perspective, or a concentric
circle and snap to them with the brush.

|
I,

—

e ——

e —

A
NN

=

O
l

2

/

Krita’s vanishing point assistants in action.

Locking the Layer

Lock the layer with the padlock so you don’t draw on it.

Quick Layer select

If you hold the R key and press a spot on your drawing, Krita will select the
layer underneath the cursor. Really useful when dealing with a large number
of layers.

Color Management

This allows you to prepare your work for print, or to do tricks with the LUT
docker so you can diagnose your image better. For example, using the LUT
docker to turn the colors grayscale in a separate view, so you can see the
values instantly.

| it f I&\ \\\.

Advanced Transform Tools

Not just rotate and scale, but also cage, wrap, liquify and non-destructive
transforms with the transform tool and masks.

More Filters and non-destructive filter layers and masks

With filters like color balance and curves you can make easy shadow layers.
In fact, with the filter layers and layer masks you can make them apply on the
fly as you draw underneath.

Opacity: 100%

clone_layer{remake me)

lens_blur_filter_layer(iremake ...

Pop-up palette

This is the little circular thing that is by default on the right click. You can
organize your brushes in tags, and use those tags to fill up the pop-up palette.
It also keeps a little color selector and color history, so you can switch
brushes on the fly.

What does Krita lack compared to Paint Tool Sai?

Variable width vector lines

The selection source option for layers

Dynamic hard-edges for strokes (the fringe effect)
No mix-docker

No Preset-tied stabilizer

No per-preset hotkeys

Conclusion

I hope this introduction got you a little more excited to use Krita, if not feel a
little more at home.

Drawing Tablets

This page is about drawing tablets, what they are, how they work, and where
things can go wrong.

What are Tablets?

Drawing with a mouse can be unintuitive and difficult compared to pencil
and paper. Even worse, extended mouse use can result in carpal tunnel
syndrome. That’s why most people who draw digitally use a specialized
piece of hardware known as a drawing tablet.

A drawing tablet is a piece of hardware that you can plug into your machine,
much like a keyboard or mouse. It usually looks like a plastic pad, with a
stylus. Another popular format is a computer monitor with stylus used to
draw directly on the screen. These are better to use than a mouse because it’s
more natural to draw with a stylus and generally better for your wrists.

With a properly installed tablet stylus, Krita can use information like pressure
sensitivity, allowing you to make strokes that get bigger or smaller depending
on the pressure you put on them, to create richer and more interesting strokes.

Note

Sometimes, people confuse finger-touch styluses with a proper tablet. You
can tell the difference because a drawing tablet stylus usually has a pointy
nib, while a stylus made for finger-touch has a big rubbery round nib, like a
finger. These tablets may not give good results and a pressure-sensitive
tablet is recommended.

Supported Tablets

Supported tablets are owned by Krita developers themselves so they can
reliably diagnose and fix bugs. We maintain a list of those here.

If you’re looking for information about iPad or Android tablets, look here.

Drivers and Pressure Sensitivity

So you have bought a tablet, a real drawing tablet. And you wanna get it to
work with Krita! So you plug in the USB cable, start up Krita and... It
doesn’t work! Or well, you can make strokes, but that pressure sensitivity
you heard so much about doesn’t seem to work.

This is because you need to install a program called a ‘driver’. Usually you
can find the driver on a CD that was delivered alongside your tablet, or on the
website of the manufacturer. Go install it, and while you wait, we’ll go into
the details of what it is!

Running on your computer is a basic system doing all the tricky bits of
running a computer for you. This is the operating system, or OS. Most people
use an operating system called Windows, but people on an Apple device have
an operating system called MacOS, and some people, including many of the
developers use a system called Linux.

The base principle of all of these systems is the same though. You would like
to run programs like Krita, called software, on your computer, and you want
Kfrita to be able to communicate with the hardware, like your drawing tablet.
But to have those two communicate can be really difficult - so the operating
system, works as a glue between the two.

Whenever you start Krita, Krita will first make connections with the
operating system, so it can ask it for a lot of these things: It would like to
display things, and use the memory, and so on. Most importantly, it would
like to get information from the tablet!

| OPERATING SvsTEM

| RARD WARSE B

—
N\

But it can’t! Turns out your operating system doesn’t know much about
tablets. That’s what drivers are for. Installing a driver gives the operating
system enough information so the OS can provide Krita with the right
information about the tablet. The hardware manufacturer’s job is to write a
proper driver for each operating system.

Warning

Because drivers modify the operating system a little, you will always need
to restart your computer when installing or deinstalling a driver, so don’t
forget to do this! Conversely, because Krita isn’t a driver, you don’t need to
even deinstall it to reset the configuration, just rename or delete the
configuration file.

Where it can go wrong: Windows

Krita automatically connects to your tablet if the drivers are installed. When
things go wrong, usually the problem isn’t with Krita.

Surface pro tablets need two drivers

Certain tablets using n-trig, like the Surface Pro, have two types of drivers.
One is native, n-trig and the other one is called wintab. Since 3.3, Krita can
use Windows Ink style drivers, just go to Settings » Configure Krita... »
Tablet Settings and toggle the Windows 8+ Pointer Input (Windows Ink)
there. You don’t need to install the wintab drivers anymore for n-trig based
pens.

Windows 10 updates

Sometimes a Windows 10 update can mess up tablet drivers. In that case,
reinstalling the drivers should work.

Wacom Tablets

There are three known problems with Wacom tablets and Windows.

The first is that if you have customized the driver settings, then sometimes,
often after a driver update, but that is not necessary, the driver breaks.
Resetting the driver to the default settings and then loading your settings
from a backup will solve this problem.

The second is that for some reason it might be necessary to change the
display priority order. You might have to make your Cintiq screen your
primary screen, or, on the other hand, make it the secondary screen. Double
check in the Wacom settings utility that the tablet in the Cintiq is associated
with the Cintiq screen.

The third is that if you have a display tablet like a cintiq and a wacom
expresskeys remote, and you have disabled Windows Ink in the calibration

page of the stylus settings dialog so you have the full set of Wintab features,
the cintiq needs to be the first item in Wacom’s desktop application list.
Otherwise you will have an offset between stylus and mouse that will get
worse the more displays there are to the left of the cintiq display.

Broken Drivers

Tablet drivers need to be made by the manufacturer. Sometimes, with really
cheap tablets, the hardware is fine, but the driver is badly written, which
means that the driver just doesn’t work well. We cannot do anything about
this, sadly. You will have to send a complaint to the manufacturer for this, or
buy a better tablet with better quality drivers.

Conflicting Drivers

On Windows, you can only have a single wintab-style driver installed at a
time. So be sure to deinstall the previous driver before installing the one that
comes with the tablet you want to use. Other operating systems are a bit
better about this, but even Linux, where the drivers are often preinstalled,
can’t run two tablets with different drivers at once.

Interfering software

Sometimes, there’s software that tries to make a security layer between Krita
and the operating system. Sandboxie is an example of this. However, Krita
cannot always connect to certain parts of the operating system while
sandboxed, so it will often break in programs like Sandboxie. Similarly,
certain mouse software, like Razer utilities can also affect whether Krita can
talk to the operating system, converting tablet information to mouse
information. This type of software should be configured to leave Krita alone,
or be deinstalled.

The following software has been reported to interfere with tablet events to
Krita:

1. Sandboxie
2. Razer mouse utilities

3. AMD Catalyst:sup:TM “game mode” (this broke the right click for
someone)

Flicks (Wait circle showing up and then calling the popup
palette)

If you have a situation where trying to draw keeps bringing up the pop-up
palette on Windows, then the problem might be flicks. These are a type of
gesture, a bit of Windows functionality that allows you to make a motion to
serve as a keyboard shortcut. Windows automatically turns these on when
you install tablet drivers, because the people who made this part of Windows
forgot that people also draw with computers. So you will need to turn it off in
the Windows flicks configuration.

Wacom Double Click Sensitivity (Straight starts of lines)

If you experience an issue where the start of the stroke is straight, and have a
wacom tablet, it could be caused by the Wacom driver double-click detection.

To fix this, go to the Wacom settings utility and lower the double click
sensitivity.

Supported Tablets

Supported tablets are the ones of which Krita developers have a version
themselves, so they can reliably fix bugs with them. We maintain a list of
those here.

Loading and Saving Brushes

In the real world, when painting or drawing, you don’t just use one tool. You
use pencils, erasers, paintbrushes, different types of paint, inks, crayons, etc.
All these have different ways of making marks.

In a digital program like Krita you have something similar. We call this a
brush engine. And much like how cars have different engines that give
different feels when driving, or how pencils make distinctly different marks
than rollerball pens, different brush engines have totally different feels.

The brush engines have a lot of different settings as well. So, you can save
those settings into presets.

Unlike Photoshop, Krita makes a difference between brush-tips and brush-
presets. Tips are only a stamp of sorts, while the preset uses a tip and many
other settings to create the full brush.

The Brush settings drop-down

To start, the Brush Settings Editor panel can be accessed in the toolbar,
between the Choose brush preset button on the right and the Fill Patterns
button on the left. Alternately, you can use the F5 key to open it.

When you open Brush Settings Editor panel you will see something like this:

Tour of the brush settings drop-down

The brush settings drop-down is divided into six areas,
Section A - General Information

This contains the Preset Icon, Live Brush Preview, the Preset Name, the
Engine name, and several buttons for saving, renaming, and reloading.

Krita’s brush settings are stored into the metadata of a 200x200 PNG (the
KPP file), where the image in the PNG file becomes the preset icon. This
icon is used everywhere in Krita, and is useful for differentiating brushes in
ways that the live preview cannot.

The live preview shows a stroke of the current brush as a little s-curve
wiggle, with the pressure being non-existent on the left, and increasing to full
pressure as it goes to the right. It can thus show the effect of the Pressure,
Drawing Angle, Distance, Fade and Fuzzy Dab sensors, but none of the
others. For some brush engines it cannot show anything. For the color

smudge, filter brush and clone tool, it shows an alternating line pattern
because these brush engines use the pixels already on canvas to change their
effect.

After the preset name, there’s a button for renaming the brush. This will save
the brush as a new brush and blacklist the previous name.

Engine

The engine of a brush is the underlying programming that generates the
stroke from a brush. What that means is that different brush engines have
different options and different results. You can see this as the difference
between using crayons, pencils and inks, but because computers are maths
devices, most of our brush engines produce different things in a more
mathematical way.

For most artists the mathematical nature doesn’t matter as much as the
different textures and marks each brush engine, and each brush engine has its
own distinct flavor and use, and can be further customized by modifying the
options.

Reloading

If you change a preset, an icon will appear behind the engine name. This is
the Reload the brush preset button. You can use it to revert to the original
brush settings.

Saving a preset

On the right, there’s Save New Brush Preset... and Overwrite Brush buttons.

Save New Brush Preset...
Will take the current preset and all its changes and save it as a new preset.
If no change was made, you will be making a copy of the current preset.

Overwrite Brush
This will only enable if there are any changes. Pressing this will override
the current preset with the new settings, keeping the name and the icon

intact. It will always make a timestamped back up in the resources folder.

Save new preset will call up the following window, with a mini scratch pad,
and all sorts of options to change the preset icon:

N Save New Brush Preset — Krita

Brush Name: | b)_Basic-5_Size Co ;::-'_-,,.-1

ERIEIn Ik atea Load Existing Thumbnail
Load Scratchpad Thumbnail
Load Image

Load from Icon Library

Clear Thumbnall

The image on the left is a mini scratch pad, you can draw on it with the
current brush, allowing small modifications on the fly.

Brush Name:
The Name of your brush. This is also used for the KPP file. If there’s
already a brush with that name, it will effectively overwrite it.

Load Existing Thumbnail
This will load the existing thumbnail inside the preset.

Load Scratch Pad Thumbnail
This will load the dashed area from the big scratch pad (Section C) into
the thumbnail area.

Load Image
With this you can choose an image from disk to load as a thumbnail.

Load from Icon Library
This opens up the icon library.

Clear Thumbnail
This will make the mini scratch pad white.

The Icon Library
To make making presets icons faster, Krita got an icon library.
(™,) Preset Icon Library — Krita

Tool Image: Color adjustment:

Hue:139.5

y ' Saturation:27.1

Mid-gray level:8.5

Emblem icon:

s 0K & Cancel

It allows you to select tool icons, and an optional small emblem. When you
press OK it will load the resulting combination into the mini scratch pad and
you can draw in the stroke.

If you go to your resources folder, there’s a folder there called
“preset_icons”, and in this folder there are “tool_icons” and “emblem_icons”.
You can add semi-transparent PNGs here and Krita will load those into the
icon library as well so you can customize your icons even more!

At the top right of the icon library, there are three sliders. They allow you to
adjust the tool icon. The top two are the same Hue and Saturation as in HSL
adjustment, and the lowest slider is a super simple levels filter. This is done
this way because the levels filter allows maintaining the darkest shadows and
brightest highlights on a tool icon, making it much better for quick
adjustments.

If you’re done with everything, you can press Save in the Save New Brush
Preset dialog and Krita will save the new brush.

Section B - The Preset Chooser

The preset chooser is much the same as the preset docker and the preset drop-
down on the F6 key. It’s unique in that it allows you to filter by engine and
this is also where you can create brushes for an engine from scratch.

It is by default collapsed, so you will need to press the arrow at the top left of
the brush engine to show it.

The top drop-down is set to “all” by default, which means it shows all
engines. It then shows a tag section where you can select the tags, the preset
list and the search bar.

Underneath that there’s a plus icon, which when pressed gives you the full
list of Krita’s engines. Selecting an engine from the list will show the brushes
for that engine.

The trashcan icon does the same as it does in the preset docker: delete, or
rather, blacklist a preset so it won’t show up in the list.

Section C - The Scratch pad

When you tweak your brushes, you want to be able to check what each
setting does. That’s why, to the right of the settings drop-down, there is a
scratch pad.

It is by default collapsed, so you will have to press the arrow at the top right
of the brush settings to show it.

When saving a new preset, you can choose to get the icon from the scratch
pad, this will load the dash area into the mini scratch pad of the Save New
Brush Preset dialog.

The scratch pad has five buttons underneath it. These are in order for:

Fill area with brush preset icon

Fill area with current image

Fill area with gradient (useful for smudge brushes)
Fill area with background color

Reset area to white

sk wiheE

Section D - The Options List

The options, as stated above, are different per brush engine. These represent
the different parameters, toggles and knobs that you can turn to make a brush
preset unique. For a couple of options, the main things to change are sliders
and check boxes, but for a lot of them, they use curves instead.

Some options can be toggled, as noted by the little check boxes next to them,
but others, like flow and opacity are so fundamental to how the brush works,
that they are always on.

The little padlock icon next to the options is for locking the brush. This has
its own page.

Section E - Option Configuration Widget

Where section D is the list of options, section E is the widget where you can
change things.

Using sensor curves

One of the big important things that make art unique to the artist who created
it is the style of the strokes. Strokes are different because they differ in speed,
rotation, direction, and the amount of pressure put onto the stylus. Because
these are so important, we would want to customize how these values are
understood in detail. The best way to do this is to use curves.

Curves show up with the size widget for example. With an inking brush, we
want to have size mapped to pressure. Just toggling the size option in the
option list will do that.

However, different people have different wrists and thus will press differently
on their stylus. Someone who presses softly tends to find it easy to make thin
strokes, but very difficult to make thick strokes. Conversely, someone who
presses hard on their stylus naturally will have a hard time making thin
strokes, but easily makes thick ones.

Such a situation can be improved by using the curves to map pressure to
output thinner lines or thicker ones.

The brush settings curves even have quick curve buttons for these at the top.
Someone who has a hard time making small strokes should try the second to
last concave button, while someone who has a hard time making thick strokes
should try the third button, the S shape.

Underneath the curve widget there are two more options:

Share curve across all settings

This is for the list of sensors. Toggling this will make all the sensors use
the same curve. Unchecked, all checked sensors will have separate
curves.

Curves calculation mode:
This indicates how the multiple values of the sensor curves are used. The

curves always go from 0 to 1.0, so if one curve outputs 0.5 and the other
0.7, then...

Multiply
Will multiply the two values, 0.5*%0.7 = 0.35.

Addition
Will add the two to a maximum of 1.0, so 0.5+0.7 = 1.2, which is then
capped at 1.0.

Maximum
Will compare the two and pick the largest. So in the case of 0.5 and
0.7, the result is 0.7.

Minimum
Will compare the two and pick the smallest. So in the case of 0.5 and
0.7, the result is 0.5.

Difference
Will subtract the smallest value from the largest, so 0.7-0.5 = 0.2.

It’s maybe better to see with the following example:

1
P

B o - B e o e B
~ep -~ -zl =il =l -
Q9900 90 -9 99—
S -
-SSPl &
il <l i A= BB - Do

0000000000000 0+0+0

3
4
5
§)
7

The first two are regular, the rest with different multiplication types.

Is a brush with size set to the distance sensor.

Is a brush with the size set to the fade sensor.

The size is calculated from the fade and distance sensors multiplied.

The size is calculated from the fade and distance sensors added to each

other. Notice how thick it is.

5. The size takes the maximum value from the values of the fade and
distance sensors.

6. The size takes the minimum value from the values of the fade and
distance sensors.

7. The size is calculated by having the largest of the values subtracted with

the smallest of the values.

=

Section F - Miscellaneous options

Eraser switch size
This switches the brush to a separately stored size when using the E key.

Eraser switch opacity

Same as above, but then with Eraser opacity.

Temporarily save tweaks to preset
This enables dirty presets. Dirty presets store the tweaks you make as
long as this session of Krita is active. After that, they revert to default.
Dirtied presets can be recognized by the icon in the top-left of the preset.

The icon in the top left of the first two presets indicate
it is “Dirty”, meaning there are tweaks made to the
preset.

Instant preview

This allows you to toggle instant preview on the brush. The Instant
Preview has a super-secret feature: when you press the instant preview
label, and then right click it, it will show a threshold slider. This slider
determines at what brush size instant preview is activated for the brush.
This is useful because small brushes can be slower with instant preview,
so the threshold ensures it only activates when necessary.

The On-canvas brush settings

There are on-canvas brush settings. If you open up the pop-up palette, there
should be an icon on the bottom-right. Press that to show the on-canvas brush
settings. You will see several sliders here, to quickly make small changes.

At the top it shows the currently active preset. Next to that is a settings
button, click that to get a list of settings that can be shown and organized for
the given brush engine. You can use the up and down arrows to order their
position, and then left and right arrows to add or remove from the list. You
can also drag and drop.

Making a Brush Preset
Now, let’s make a simple brush to test the waters with:

Getting a default for the brush engine.

First, open the settings with the F5 key.

Then, press the arrow on the upper left to open the preset chooser. There,
press the “+” icon to get a list of engines. For this brush we’re gonna make a
pixel brush.

Example: Making an inking brush

1. Draw on the scratch pad to see what the current brush looks like. If done
correctly, you should have a 5px wide brush that has pressure set to
opacity.

2. Let us turn off the opacity first. Click on the opacity option in the right-

hand list. The settings should now be changed to a big curve. This is the

Sensor curve.

Uncheck the Enable Pen Settings checkbox.

4. Test on the scratch pad... there still seems to be something affecting
opacity. This is due to the flow option.

5. Select the Flow option from the list on the right hand. Flow is like
Opacity, except that Flow is per dab, and opacity is per stroke.

6. Uncheck the Enable Pen Settings checkbox here as well. Test again.

7. Now you should be getting somewhere towards an inking brush. It is
still too small however, and kinda grainy looking. Click Brush Tip in the
brush engine options.

8. Here, the diameter is the size of the brush-tip. You can touch the slider

e

10.

11.

change the size, or right-click it and type in a value. Set it to 25 and test
again. It should be much better.

Now to make the brush feel a bit softer, turn down the fade parameter to
about 0.9. This’ll give the brush mask a softer edge.

If you test again, you’ll notice the fade doesn’t seem to have much
effect. This has to do with the spacing of the dabs: The closer they are
together, the harder the line is. By default, this is 0.1, which is a bit low.
If you set it to 10 and test, you’ll see what kind of effect spacing has.
The Auto checkbox changes the way the spacing is calculated, and Auto
Spacing with a value of 0.8 is the best value for inking brushes. Don’t
forget that you can use right-click to type in a value.

Now, when you test, the fade seems to have a normal effect... except on
the really small sizes, which look pixelly. To get rid of that, check the
anti-aliasing check box. If you test again, the lines should be much nicer

now.

Saving the new Brush

When you’re satisfied, go to the upper left and select Save New Brush
Preset... button.

You will get the save preset dialog. Name the brush something like “My

Preset”. Then, select Load from Icon Library to get the icon library. Choose a

nice tool icon and press OK.

The icon will be loaded into the mini scratch pad on the left. Now doodle a
nice stroke next to it. If you feel you messed up, just go back to the icon
library to load a new icon.

Finally press Save, and your brush should be done.
You can further modify your inking brush by...

Changing the amount of pressure you need to put on a brush to make it full
size.
To do this, select the size option, and press the pressure sensor from the
list next to the curve. The curve should look like a straight line. Now if
you want a brush that gets big with little pressure, tick on the curve to

make a point, and drag the point to the upper-left. The more the point is to
the upper-left, the more extreme the effect. If you want instead a brush
that you have to press really hard on to get to full size, drag the dot to the
lower-right. Such a brush is useful for fine details. Don’t forget to save
the changes to your brush when done.

Making the fine lines look even softer by using the flow option.
To do this, select the flow option, and turn back on the Enable Pen
Settings check box. Now if you test this, it is indeed a bit softer, but
maybe a bit too much. Click on the curve to make a dot, and drag that dot
to the top-left, half-way the horizontal of the first square of the grid. Now,
if you test, the thin lines are much softer, but the hard your press, the
harder the brush becomes.

Sharing Brushes

Okay, so you’ve made a new brush and want to share it. There are several
ways to share a brush preset.

The recommended way to share brushes and presets is by using the resource
bundle system. We have detailed instructions on how to use them on the

resource management page.

However, there are various old-fashioned ways of sharing brushes that can be
useful when importing and loading very old packs:

Sharing a single preset

There are three types of resources a single preset can take:

1. A Paintoppreset file: This is the preset proper, with the icon and the
curves stored inside.

2. A Brush file: This is the brush tip. When using masked brushes, there
are two of these.

3. A Pattern file: this is when you are using textures.

So when you have a brush that uses unique predefined tips for either brush tip

or masked brush, or unique textures you will need to share those resources as
well with the other person.

To find those resources, go to Settings » Manage Resources... > Open
Resource Folder.

There, the preset file will be inside paintoppresets, the brush tips inside
brushes and the texture inside patterns.

Importing a single KPP file.

Now, if you want to use the single preset, you should go to the preset chooser
on the F6 key and press the folder icon there. This will give a file dialog.
Navigate to the kpp file and open it to import it.

If there are brush tips and patterns coming with the file, do the same with
pattern via the pattern docker, and for the brush-tip go to the settings drop-
down (F5) and then go to the “brush-tip” option. There, select predefined
brush, and then the “import” button to call up the file dialog.

Sharing via ZIP (old-fashioned)

Sharing via ZIP should be replaced with resource bundles, but older brush
packs are stored in ZIP files.

Using a ZIP with the relevant files.

1. Go to Settings » Manage Resources... » Open Resource Folder to open
the resource folder.

2. Then, open up the ZIP file.

3. Copy the brushes, paintoppresets and patterns folders from the ZIP file

to the resource folder. You should get a prompt to merge the folders,

agree to this.

Restart Krita.

Enjoy your brushes!

ok

On-Canvas Brush Editor

Krita’s brush editor is, as you may know, on the F5 key. However, sometimes
you just want to modify a single parameter quickly. Perhaps even in canvas-
only mode. The on canvas brush editor or brush HUD allows you to do this.
It’s accessible from the pop-up palette, by ticking the lower-right arrow
button.

!ﬂ Basic_circle

Size: 50.00 px
Opacity: 1.00

Angle: 0

You can change the amount of visible settings and their order by clicking the
settings icon next to the brush name.

Brush HUD configuration — Krita

Available properties: Current properties:

Down

On the left are all unused settings, on the right are all used settings. You use
the > and < buttons to move a setting between the two columns. The Up and
Down buttons allow you to adjust the order of the used settings, for when you
think flow is more important than size.

E Block mix_tilt
Size: 64.00 px
Opacity: 1.00

Angle: 90

Smearing

SmudgeRate: 0.68

ColorRate: 1.00

These set-ups are PER brush engine, so different brush engines can have
different configurations.

Mirror Tools

Draw on one side of a mirror line while the Mirror Tool copies the results to
the other side. The Mirror Tools are accessed along the toolbar. You can
move the location of the mirror line by grabbing the handle.

Mirror Tools give a similar result to the Multibrush Tool, but unlike the
Multibrush which only traces brush strokes like the Freehand Brush Tool, the
Mirror Tools can be used with any other tool that traces strokes, such as the
Straight Line Tool and the Bezier Curve Tool, and even with the Multibrush
Tool.

Horizontal Mirror Tool - Mirror the results along the horizontal axis.
Vertical Mirror Tool - Mirror the results along the vertical axis.

There are additional options for each tool. You can access these by the
clicking the drop-down arrow located on the right of each tool.

e Hide Mirror X/Y Line (toggle) — Locks the mirror axis and hides the
axis line.

e Lock X/Y Line (toggle) - hides the move icon on the axis line.
e Move to Canvas Center X/Y - Moves the axis line to the center of the
canvas.

Mirroring along a rotated line

The Mirror Tool can only mirror along a perfectly vertical or horizontal line.
To mirror along a line that is at a rotated angle, use the Multibrush Tool and
its various parameters, it has more advanced options besides basic symmetry.

Painting with Assistants

The assistant system allows you to have a little help while drawing straight
lines or circles.

They can function as a preview shape, or you can snap onto them with the
freehand brush tool. In the tool options of free hand brush, you can toggle
Snap to Assistants to turn on snapping.

/
s

/

v

Krita’s vanishing point assistants in action.

The following assistants are available in Krita:

Types

There are several types in Krita. You can select a type of assistant via the tool
options docker.

Ellipse

An assistant for drawing ellipses and circles.

This assistant consists of three points: the first two are the axis of the ellipse,
and the last one is to determine its width.

Concentric Ellipse
The same an ellipse, but allows for making ellipses that are concentric to
each other.

If you press the shift key while holding the first two handles, they will snap
to perfectly horizontal or vertical lines. Press the shift key while holding the
third handle, and it’ll snap to a perfect circle.

Perspective

This ruler allows you to draw and manipulate grids on the canvas that can
serve as perspective guides for your painting. A grid can be added to your
canvas by first clicking the tool in the tool bar and then clicking four points
on the canvas which will serve as the four corners of your grid.

This grid can be used with the ‘perspective’ sensor, which can influence
brushes.

The grid can be manipulated by pulling on any of its four corners. The grid

can be extended by clicking and dragging a midpoint of one of its edges. This
will allow you to expand the grid at other angles. This process can be
repeated on any subsequent grid or grid section.If you press the shift key
while holding any of the corner handles, they’ll snap to one of the other
corner handles, in sets. You can delete any grid by clicking on the cancel
button at its center. This tool can be used to build reference for complex
scenes.

Ruler

There are three assistants in this group:

Ruler
Helps create a straight line between two points.

Infinite Ruler
Extrapolates a straight line beyond the two visible points on the canvas.

Parallel Ruler
This ruler allows you to draw a line parallel to the line between the two
points anywhere on the canvas.

If you press the shift key while holding the first two handles, they will snap
to perfectly horizontal or vertical lines.

Spline

This assistant allows you to position and adjust four points to create a cubic
bezier curve. You can then draw along the curve, snapping your brush stroke
directly to the curve line. Perfect curves every time!

If you press the shift key while holding the first two handles, they will snap
to perfectly horizontal or vertical lines. Press the shift key while holding the
third or fourth handle, they will snap relative to the handle they are attached
to.

Vanishing Point

This assistant allows you to create a vanishing point, typically used for a
horizon line. A preview line is drawn and all your snapped lines are drawn to
this line.

It is one point, with four helper points to align it to previously created
perspective lines.

They are made and manipulated with the Assistant Tool.

If you press the shift key while holding the center handle, they will snap to
perfectly horizontal or vertical lines depending on the position of where it
previously was.

Changed in version 4.1: The vanishing point assistant also shows several
general lines.

When you’ve just created, or when you’ve just moved a vanishing point
assistant, it will be selected. This means you can modify the amount of lines
shown in the tool options of the Assistant Tool.

Fish Eye Point

Like the vanishing point assistant, this assistant is per a set of parallel lines in
a 3d space. So to use it effectively, use two, where the second is at a 90
degrees angle of the first, and add a vanishing point to the center of both. Or
combine one with a parallel ruler and a vanishing point, or even one with two
vanishing points. The possibilities are quite large.

This assistant will not just give feedback/snapping between the vanishing
points, but also give feedback to the relative left and right of the assistant.
This is so you can use it in edge-cases like panoramas with relative ease.

If you press the shift key while holding the first two handles, they will snap
to perfectly horizontal or vertical lines. Press the shift key while holding the
third handle, and it’ll snap to a perfect circle.

Tutorials

Check out this in depth discussion and tutorial on
https://www.youtube.com/watch?v=0hEv2pw3Eul

Setting up Krita for technical drawing-like
perspectives

So now that you’ve seen the wide range of drawing assistants that Krita

offers, here is an example of how using these assistants you can set up Krita
for technical drawing.

This tutorial below should give you an idea of how to set up the assistants for
specific types of technical views.

If you want to instead do the true projection, check out the projection
category.

Orthographic
Orthographic is a mode where you try to look at something from the left or
the front. Typically, you try to keep everything in exact scale with each other,

unlike perspective deformation.

The key assistant you want to use here is the Parallel Ruler. You can set these
up horizontally or vertically, so you always have access to a Grid.

Axonometric

All of these are set up using three Parallel Rulers.

https://www.youtube.com/watch?v=OhEv2pw3EuI

Oblique
For oblique, set two parallel rulers to horizontal and vertical, and one to
an angle, representing depth.

Dimetric & Isometric
Isometric perspective has technically all three rulers set up at 120° from
each other. Except when it’s game isometric, then it’s a type of dimetric
projection where the diagonal values are a 116.565° from the main. The
latter can be easily set up by snapping the assistants to a grid.

Trimetric
Is when all the angles are slightly different. Often looks like a slightly
angled isometric.

Linear Perspective

1 Point Perspective
A 1 point perspective is set up using 1 vanishing point, and two crossing
perpendicular parallel rulers.

2 Point Perspective
A 2 point perspective is set up using 2 vanishing point and 1 vertical
parallel ruler. Often, putting the vanishing points outside the frame a little
can decrease the strength of it.

3 Point Perspective
A 3 point perspective is set up using 3 vanishing point rulers.

Logic of the vanishing point

There’s a little secret that perspective tutorials don’t always tell you, and
that’s that a vanishing point is the point where any two parallel lines meet.
This means that a 1 point perspective and 2 point perspective are virtually the
same.

We can prove this via a little experiment. That good old problem: drawing a
rail-road.

You are probably familiar with the problem: How to determine where the
next beam is going to be, as perspective projection will make them look
closer together.

Typically, the solution is to draw a line in the middle and then draw lines
diagonally across. After all, those lines are parallel, meaning that the exact
same distance is used.

But because they are parallel, we can use a vanishing point assistant instead,
and we use the alignment handles to align it to the diagonal of the beam, and
to the horizontal (here marked with red).

That diagonal can then in turn be used to determine the position of the beams:

Because any given set of lines has a vanishing point (outside of the ones flat
on the view-plane), there can be an infinite amount of vanishing points in a
linear perspective. Therefore, Krita allows you to set vanishing points
yourself instead of forcing you to only use a few.

Fish Eye perspective
Fish eye perspective works much the same as the linear perspective, the big

difference being that in a fish-eye perspective, any parallel set of lines has
two vanishing points, each for one side.

So, to set them up, the easiest way is one horizontal, one vertical, on the same
spot, and one vanishing point assistant in the middle.

But, you can also make one horizontal one that is just as big as the other
horizontal one, and put it halfway:

Working with Images

Computers work with files and as a painting program, Krita works with
images as the type of file it creates and manipulates.

What do Images Contain?

If you have a text document, it of course contains letters, strung in the right
order, so the computer loads them as coherent sentences.

Raster Data

This is the main data on the paint layers you make. So these are the strokes
with the paint brush and look pixely up close. A multi-layer file will contain
several of such layers, that get overlaid on top of each other so make the final
image.

A single layer file will usually only contain raster data.

Vector Data

These are mathematical operations that tell the computer to draw pixels on a
spot. This makes them much more scalable, because you just tell the
operation to make the coordinates 4 times bigger to scale it up. Due to this
vector data is much more editable, lighter, but at the same time it’s also much
more CPU intensive.

Operation Data

Stuff like the filter layers, that tells Krita to change the colors of a layer, but
also transparency masks, group layer and transformation masks are saved to
multi-layer files. Being able to load these depend on the software that initially
made the file. So Krita can load and save groups, transparency masks and
layer effects from PSD, but not load or save transform masks.

Metadata

Metadata is information like the creation date, author, description and also
information like DPI.

Image size

The image size is the dimension and resolution of the canvas. Image size has
direct effect file size of the Krita document. The more pixels that need to be
remembered and the higher the bit depth of the color, the heavier the resulting
file will be.

DPI1/PPI

DPI stands for Dots per Inch, PPI stands for Pixels per Inch. In printing
industry, suppose if your printer prints at 300 DPI. It means it is actually
putting 300 dots of colors in an area equal to an Inch. This means the number
of pixels your artwork has in a relative area of an inch.

DPI is the concern of the printer, and artists while creating artwork should
keep PPI in mind. According to the PPI you have set, the printers can decide
how large your image should be on a piece of paper.

Some standards:

72 PPI
This is the default PPI of monitors as assumed by all programs. It is not
fully correct, as most monitors these days have 125 PPI or even 300 PPI
for the retina devices. None the less, when making an image for computer
consumption, this is the default.

120 PPI
This is often used as a standard for low-quality posters.

300 PPI
This is the minimum you should use for quality prints.

600 PPI
The quality used for line art for comics.

Color depth

We went over color depth in the Color Management page. What you need to
understand is that Krita has image color spaces, and layer color spaces, the
latter which can save memory if used right. For example, having a line art
layer in grayscale can half the memory costs.

Image color space vs layer color space vs conversion.

Because there’s a difference between image color space and layer color
space, you can change only the image color space in Image > Properties...
which will leave the layers alone. But if you want to change the color space
of the file including all the layers you can do it by going to Image » Convert
Image Color Space... this will convert all the layers color space as well.

Author and Description

¥ v o~ Document Information - Krita

General

General
Path:

Title: Unnamed

Subject:

Language:

Comments:

03/16/16 10:03 PM, Unknown
Last printed:
otal editing time:

Revision number: 0

Encryption: This document does not support encryption

Krita will automatically save who created the image into your image’s
metadata. Along with the other data such as time and date of creation and
modification, Krita also shows editing time of a document in the document
information dialog, useful for professional illustrators, speed-painters to keep
track of the time they worked on artwork for billing purposes. It detects when
you haven’t performed actions for a while, and has a precision of +60
seconds. You can empty it in the document info dialog and of course by
unzipping you . kra file and editing the metadata there.

These things can be edited in File » Document Information, and for the
author’s information Settings » Configure Krita... » Author. Profiles can be
switched under Settings » Active Author Prdfile.

Setting the canvas background color

You can set the canvas background color via Image » Image Background
Color and Transparency... menu item. This allows you to turn the
background color non-transparent and to change the color. This is also useful
for certain file formats which force a background color instead of
transparency. PNG and JPG export use this color as the default color to fill in
transparency if you do not want to export transparency.

If you come in from a program like Paint Tool Sai, then using this option, or
using As canvas color radio button at Background: section in the new file
options, will allow you to work in a slightly more comfortable environment,
where transparency isn’t depicted with checkered boxes.

Basic transforms

There are some basic transforms available in the Image menu.

Shear Image...
This will allow you to skew the whole image and its layers.

Rotate
This show a submenu that will allow you to rotate the image and all its
layers quickly.

Mirror Image Horizontally/Vertically
This will allow you to mirror the whole image with all its layers.

But there are more options than that...

Cropping and resizing the canvas

You can crop and image with the Crop Tool, to cut away extra space and
improve the composition.

Trimming

Using Image » Trim to Current Layer, Krita resizes the image to the
dimensions of the layer selected. Useful for when you paste a too large image
into the layer and want to resize the canvas to the extent of this layer.

Image » Trim to Selection is a faster cousin to the crop tool. This helps us to
resize the canvas to the dimension of any active selection. This is especially
useful with right clicking the layer on the layer stack and choosing Select
Opaque. Image » Trim to Selection will then crop the canvas to the selection
bounding box.

Image » Trim to Image Size is actually for layers, and will trim all layers to
the size of the image, making your files lighter by getting rid of invisible
data.

Resizing the canvas

You can also resize the canvas via Image » Resize Canvas... (or the Ctrl +
Alt + C shortcut). The dialog box is shown below.

¥ w o~ Resize Canvas - Krita

1000

Constrain proportions

Offset

Pixels (px)

Pix

In this, Constrain proportions checkbox will make sure the height and width
stay in proportion to each other as you change them. Offset indicates where
the new canvas space is added around the current image. You basically
decide where the current image goes (if you press the left-button, it’ll go to
the center left, and the new canvas space will be added to the right of the
image).

Another way to resize the canvas according to the need while drawing is
when you scroll away from the end of the canvas, you can see a strip with an
arrow appear. Clicking this will extend the canvas in that direction. You can
see the arrow marked in red in the example below:

r Select Filter Toc

RGB (8-bit integer/chann..sRGB-

Resizing the image

Scale Image to New Size... allows you to resize the whole image. Also,
importantly, this is where you can change the resolution or upres your image.
So for instance, if you were initially working at 72 PPI to block in large
shapes and colors, images, etc... And now you want to really get in and do
some detail work at 300 or 400 PPI this is where you would make the change.

Like all other dialogs where a chain link appears, when the chain is linked the
aspect ratio is maintained. To disconnect the chain, just click on the link and
the two halves will separate.

¥ w o~ Scale To Mew Size - Krita
Pixel Dimensions
Width: | 283C | Pixels (px)
Height: | 2179 2| | Pixels
Filter: Bicubic
Print Size

Width: | 3.7133 | Inches (in)

Height: | 2.8600] = | Inches (in)

Cancel

Separating Images

® ~ o~ Separate Image - Krita

Current color model: RGB (8-bit integer/channel)

Flatten all layers before separation

Alpha Options

alpha channel to each separated channel as an alpha channel

ha channel

eparate separation from alpha channel

Qutputto color, not grayscale

This powerful image manipulation feature lets you separate an image into its
different components or channels.

This is useful for people working in print, or people manipulating game
textures. There’s no combine functionality, but what you can do, if using
colored output, is to set two of the channels to the addition Blending Modes.

For grayscale images in the RGB space, you can use the Copy Red, Copy
Green and Copy Blue blending modes, with using the red one for the red
channel image, etc.

Saving, Exporting and Opening Files

When Krita creates or opens a file, it has a copy of the file in memory, that it
edits. This is part of the way how computers work: They make a copy of their
file in the RAM. Thus, when saving, Krita takes its copy and copies it over
the existing file. There’s a couple of tricks you can do with saving.

Save
Krita saves the current image in its memory to a defined place on the
hard-drive. If the image hadn’t been saved before, Krita will ask you

where to save it.

Save As...
Make a copy of your current file by saving it with a different name. Krita
will switch to the newly made file as its active document.

Open...
Open a saved file. Fairly straightforward.

Export...
Save a file to a new location without actively opening it. Useful for when
you are working on a layered file, but only need to save a flattened
version of it to a certain location.

Open Existing Document as Untitled Document...
This is a bit of an odd one, but it opens a file, and forgets where you
saved it to, so that when pressing ‘save’ it asks you where to save it. This
is also called ‘import’ in other programs.

Create Copy from Current Image
Makes a new copy of the current image. Similar to Open Existing
Document as Untitled Document..., but then with already opened files.

Save Incremental Version
Saves the current image as ‘filename’_XXX.kra and switches the current
document to it.

Save Incremental Backup
Copies and renames the last saved version of your file to a back-up file
and saves your document under the original name.

Note

Since Krita’s file format is compressed data file, in case of a corrupt or
broken file you can open it with archive managers and extract the contents
of the layers. This will help you to recover as much as possible data from
the file. On Windows, you will need to rename it to filename.zip to open it.

Saving, AutoSave and Backup Files

Krita does its best to keep your work safe. But if you want to make sure that
you won’t lose work, you will need to understand how Saving, AutoSave and
Backup Files work in Krita.

Saving

Krita does not store your images somewhere without your intervention. You
need to save your work, or it will be lost, irretrievably. Krita can save your
images in many formats. You should always save your work in Krita’s native
format, . kra because that supports all Krita’s features.

Additionally, you can export your work to other formats, for compatibility
with other applications or publication on the Web or on paper. Krita will
warn which aspects of your work are going to be lost when you save to
another format than . kra and offers to make a .kra file for you as well.

If you save your work, Krita will ask you where it should save on your
computer. By default, this is the Pictures folder in your User folder: this is
true for all operating systems.

If you use Save As... your image will be saved under a new name. The
original file under its own name will not be deleted. From now on, your file
will be saved under the new name.

If you use Export... using a new filename, a new file will be created with a
new name. The file you have open will keep the old name, and the next time
you save it, it will be saved under the old name.

You can Save, Save As... and Export... to any file format.
See also

Saving for the Web

AutoSave

AutoSave is what happens when you’ve worked for a bit and not saved your
work yourself: Krita will save your work for you. Autosave files are by
default hidden in your file manager. You can configure Krita 4.2 and up to
create autosave files that are visible in your file manager. By default, Krita
autosaves every fifteen minutes; you can configure that in the File tab of the
General Settings page of the Configure Krita dialog, which is in the Settings
menu (Linux, Windows) or in the Application menu (macOS).

If you close Krita without saving, your unsaved work is lost and cannot be
retrieved. Closing Krita normally also means that autosave files are removed.

o Configure Krita

General

General

Cursor Window | Tools File Handling Miscellaneous
v Enable

save Interval:

Number of Backup F
Kra File Compressior

Comy

Us for very |z : cannot be opened in ve of Krita older than 4.2.0)

There are two possibilities:

¢ You hadn’t saved your work at all
e You had saved your work already

AutoSave for Unsaved Files

If you had not yet saved your work, Krita will create an unnamed AutoSave
file.

If you’re using Linux or macOS, the AutoSave file will be a hidden file in
your home directory. If you’re using Windows, the AutoSave file will be a
file in your user’s ¥TEMP% folder. In Krita 4.2 and up, you can configure Krita
to make the AutoSave files visible by default.

A hidden autosave file will be named like .krita-12549-document_1-
autosave.kra

If Krita crashes before you had saved your file, then the next time you start
Krita, you will see the file in a dialog that shows up as soon as Krita starts.
You can select to restore the files, or to delete them.

I Recover Files — Krita

The following autosave file can be recovered:

ocument_1-autosave.kra (24-04-2019 13:13)

If Krita crashed, and you’re on Windows and your %TEMP% folder gets cleared,
you will have lost your work. Windows does not clear the %TEMP% folder by
default, but you can enable this feature in Settings. Applications like Disk
Cleanup or cCleaner will also clear the ¥TEMP% folder. Again, if Krita crashes,
and you haven’t saved your work, and you have something enabled that clear
your %TEMP% folder, you will have lost your work.

If Krita doesn’t crash, and you close Krita without saving your work, Krita
will remove the AutoSave file: your work will be gone and cannot be
retrieved.

If you save your work and continue, or close Krita and do save your work,
the AutoSave file will be removed.

AutoSave for Saved Files

If you had already saved your work, Krita will create a named AutoSave file.
A hidden named autosave file will look like .myimage.kra-autosave.kra.

By default, named AutoSave files are hidden. Named AutoSave files are
placed in the same folder as the file you were working on.

If you start Krita again after it crashed and try to open your original file, Krita
will ask you whether to open the AutoSave file instead:

o 7 Krita

'y
1Y
W
15

o

If you choose “no”, the AutoSave file will be removed. The work that has
been done since the last time you saved your file yourself will be lost and
cannot be retrieved.

If you choose “yes”, the AutoSave file will be opened, then removed. The file
you have open will have the name of your original file. The file will be set to
Modified, so the next time you try to close Krita, Krita will ask you whether
you want to save the file. If you choose No, your work is irretrievably gone.
It cannot be restored.

If you use Save As... your image will be saved under a new name. The
original file under its own name and its AutoSave file are not deleted. From
now on, your file will be saved under the new name; if you save again, an
AutoSave file will be created using the new filename.

If you use Export... using a new filename, a new file will be created with a
new name. The file you have open will keep the new name, and the next time
you save it, the AutoSave file will be created from the last file saved with the
current name, that is, not the name you choose for Export....

Backup Files

There are three kinds of Backup files

e Ordinary Backup files that are created when you save a file that has been
opened from disk

¢ Incremental Backup files that are copies of the file as it is on disk to a
numbered backup, and while your file is saved under the current name

e Incremental Version files that are saves of the file you are working on
with a new number, leaving alone the existing files on disk.

Ordinary Backup Files

If you have opened a file, made changes, then save it, or save a new file after
the first time you’ve saved it, Krita will save a backup of your file.

You can disable this mechanism in the File tab of the General Settings page
of the Configure Krita dialog, which is in the Settings menu (Linux,
Windows) or in the Application menu (macOS). By default, Backup files are
enabled.

General

File Handling M

hidden by default
<up File on Saving

File Location

Number of Backu

of Krita older than 4.2.0)

By default, a Backup file will be in the same folder as your original file. You
can also choose to save Backup files in the User folder or the %TEMP% folder;
this is not as safe because if you edit two files with the same name in two
different folders, their backups will overwrite each other.

By default, a Backup file will have ~ as a suffix, to distinguish it from an
ordinary file. If you are using Windows, you will have to enable “show file
extensions” in Windows Explorer to see the extension.

test — Dolphin

File Edit Mew Go Tools Settings Help
C > ma = T Q

Places > Home > test

™ Root
] Trash

B boud
P Dropbox

Remote

B Metwork bla.kra bla.kra~

Devices
E 762,1 GiB Hard Drive
£, Windows

bla.kra~ ...47,7 KiB) c— s 1466 GIB free

If you want to open the Backup file, you will have to rename it in your file
manager. Make sure the extension ends with . kra.

Every time you save your file, the last version without a ~ suffix will be
copied to the version with the ~ suffix. The contents of the original file will
be gone: it will not be possible to restore that version.

Incremental Backup Files

Incremental Backup files are similar to ordinary Backup files: the last saved
state is copied to another file just before saving. However, instead of
overwriting the Backup file, the Backup files are numbered:

test — Dolphin

File Edit View Go Toeols Settings Help

< > & W QB M@

Places > Home > test

B Root

T[] Trash

B boud

[Dropbox

Remote

B MNetwork bla.kra bla.kra~ bla~000.kra

Devices

[762,1 GIB Hard Drive

B4 Windows ‘ ‘ ‘
bla~001.kra bla~002.kra bla~003.kra
bla~004.kra bla~005.kra bla~006.kra

bla~006.kra ..., 481,6 KiB) o—

1466 GIiB free

Use this when you want to keep various known good states of your image
throughout your painting process. This takes more disk space, of course.

Do not be confused: Krita does not save the current state of your work to the
latest Incremental file, but copies the last saved file to the Backup file and

then saves your image under the original filename.

Incremental Version Files

Incremental Version works a bit like Incremental Backup, but it leaves the
original files alone. Instead, it will save a new file with a file number:

File Edit View Go
C > a8 af Ha

Places

™ Root
[i] Trash
B boud
1 Dropbox

Remote
B Metwork

Devices

B 762,1 GiB Hard Drive
B Windows

test — Dolphin

Tocls Settings Help

Q B @

> Home > test

N\

N7

bla_001.kra bla_o0z.kra bla_003.kra
bla_004.kra bla.kra
5 Files (2,9 MiB) S m—— 146,6 GIB free

Templates

Mame:
Recent Docum... i
Image Size
Predefi
Custom Docu...
Width:

920
' Create from Cli... | | Height: | 1080
“ Comic Templat...
16:10 EEHEGRETIER

< | DSLR Templates - | sRGB-elle- re.ice (Default)

..| Texture Templ...

Contents

Description:

Open Existing Document

Templates are just .kra files which are saved in a special location so it can be
pulled up by Krita quickly. This is like the Open Existing Document as
Untitled Document... but then with a nicer place in the UI.

You can make your own template file from any .kra file, by using File »
Create Template from Image... menu item. This will add your current
document as a new template, including all its properties along with the layers
and layer contents.

We have the following defaults:

Comic Templates

These templates are specifically designed for you to just get started with
drawing comics. The comic template relies on a system of vectors and clones
of those vector layers which automatically reflect any changes made to the
vector layers. In between these two, you can draw your picture, and not fear
them drawing over the panel. Use Inherit Alpha to clip the drawing by the
panel.

European Bande Desinée Template.
This one is reminiscent of the system used by for example TinTin or
Spirou et Fantasio. These panels focus on wide images, and horizontal
cuts.

US-style comics Template.
This one is reminiscent of old DC and Marvel comics, such as Batman or
Captain America. Nine images for quick story progression.

Manga Template.
This one is based on Japanese comics, and focuses on a thin vertical
gutter and a thick horizontal gutter, ensuring that the reader finished the
previous row before heading to the next.

Waffle Iron Grid
12 little panels at your disposal.

Design Templates

These are templates for design and have various defaults with proper ppi at
your disposal:

Cinema 16:10

Cinema 2.93:1
Presentation A3-landscape
Presentation A4 portrait

e Screen 4:3
e Web Design

DSLR templates

These have some default size for photos:

Canon 55D
Canon 5DMK3
Nikon D3000
Nikon D5000
Nikon D7000

Texture Templates

These are for making 3D textures, and are between 1024, to 4092.

Introduction to Layers and Masks

Krita supports layers which help to better control parts and elements of your
painting.

Think of an artwork or collage made with various stacks of papers with some
paper cut such that they show the paper beneath them while some hide what’s
beneath them. If you want to replace an element in the artwork, you replace
that piece of paper instead of drawing the entire thing. In Krita instead of
papers we use Layers. Layers are part of the document which may or may
not be transparent, they may be smaller or bigger than the document itself,
they can arrange one above other, named and grouped.

Layers can give better control over your artwork for example you can re-
color an entire artwork just by working on the separate color layer and
thereby not destroying the line art which will reside above this color layer.

You can edit individual layers, you can even add special effects to them, like
Layer styles, blending modes, transparency, filters and transforms. Krita
takes all these layers in its layer stack, including the special effects and
combines or composites together a final image. This is just one of the many
digital image manipulation tricks that Krita has up its sleeve!

Usually, when you put one paint layer on top of another, the upper paint layer
will be fully visible, while the layer behind it will either be obscured,
occluded or only partially visible.

Managing layers
Some artists draw with limited number of layers but some prefer to have

different elements of the artwork on separate layer. Krita has some good layer
management features which make the layer management task easy.

You can group layers and organise the elements of your artwork.

The layer order can be changed or layers can be moved in and out of a group
in the layer stack by simply holding them and dragging and dropping. Layers
can also be copied across documents while in the subwindow mode, by
dragging and dropping from one document to another.

These features save time and also help artists in maintaining the file with a
layer stack which will be easy to understand for others who work on the same
file. In addition to these layers and groups can both be labeled and filtered by
colors, thus helping the artists to visually differentiate them.

To assign a color label to your layer or layer group you have to right click on
the layer and choose one of the given colors from the context menu. To
remove an already existing color label you can click on the ‘x’ marked box in
the context menu.

Right Click - context menu

ro

Color labels

ow in Timeline

Ctrl+Shift+R

Once you assign color labels to your layers, you can then filter layers having
similar color label by clicking on one or more colors in the list from the drop-

down situated at the top-right corner of the layer docker.

Click Here to
access color labels

i *

¢ I
(9
]

[ﬂ
(& (d

i ‘
e
e

o

9 () (9

&
i
=
[
|
- =
~E
. <]
E

e

[*
[od|
(9 (4
|

e

Lol
{ *

EEEE_ _Em
|

i *

{ *
|

Types of Layers

Filter layers

Opacity: 100% by colors
File Layer . O Layers
Filter Layer e Layer 4 (Color Balance)
Fill layer
Vector Layer *HlY e

! . E Layer 8

Group Layer

? - \:l Laver 9

Clone Layer * B T Layer7

Paint Layer THl Y Laye

The image above shows the various types of layers in Layers. Each layer type
has a different purpose for example all the vector elements can be only placed
on a vector layer and similarly normal raster elements are mostly on the paint
layer, Layers and Masks page contains more information about these types
layers.

Now Let us see how these layers are composited in Krita.

How are layers composited in Krita ?

In Krita, the visible layers form a composite image which is shown on the
canvas. The order in which Krita composites the layers is from bottom to top,
much like the stack of papers we discussed above. As we continue adding
layers, the image we see changes, according to the properties of the newly
added layers on top. Group Layers composite separately from the other layers
in the stack, except when pass through mode is activated. The layers inside a

group form a composite image first and then this composite is taken into
consideration while the layer stack is composited to form a whole image. If
the pass through mode is activated by pressing the icon similar to bricked
wall, the layers within the group are considered as if they are outside of that
particular group in the layer stack, however, the visibility of the layers in a
group depends on the visibility of the group.

Group composites
separately

9

-+

9

@ 9@ @@ @

v

o/

|

Y4
(od]

Layer 11

“.‘_'_J .
B
e
Y

Layers within group
are composited along
with all layers

]

The groups in a PSD file saved from Photoshop have pass-through mode on
by default unless they are specifically set with other blending modes.

Inherit Alpha or Clipping layers

There is a clipping feature in Krita called inherit alpha. It is denoted by an
alpha icon in the layer stack.

Inherit Alpha

It can be somewhat hard to figure out how the inherit alpha feature works in
Krita for the first time. Once you click on the inherit alpha icon on the layer
stack, the pixels of the layer you are painting on are confined to the combined
pixel area of all the layers below it. That means if you have the default white
background layer as first layer, clicking on the inherit alpha icon and painting
on any layer above will seem to have no effect as the entire canvas is filled
with white. Hence, it is advised to put the base layer that you want the pixels
to clip in a group layer. As mentioned above, group layers are composited
separately, hence the layer which is the lowest layer in a group becomes the
bounding layer and the content of the layers above this layer clips to it if
inherit alpha is enabled.

- |G
L o Eﬂ.-n o
v @

-
®
=
*
v
®
®
*

F

Inherit Alpha Outside Group Inherit Alpha Inside Group

Top layer
RS y o B
e
Tphene
gyl
P I 5 Fertangle
[Groupt-------- e
Can Can [Layer | Bottom layer Middle layer
Example 1: Example 2:

Triangle layer with ~ Triangle+5phere layers
alpha-inheritance with alpha-inheritance

You can also enable alpha inheritance to a group layer.

Masks and Filters

Krita supports non-destructive editing of the content of the layer. Non-
destructive editing means editing or changing a layer or image without
actually changing the original source image permanently, the changes are just
added as filters or masks over the original image while keeping it intact, this
helps a lot when your workflow requires constant back and forth. You can go
back to original image with a click of a button. Just hide the filter or mask
you have your initial image.

You can add various filters to a layer with Filter mask, or add Filter layer
which will affect the whole image. Layers can also be transformed non-
destructively with the transformation masks, and even have portions
temporarily hidden with a Transparent Mask. Non-destructive effects like
these are very useful when you change your mind later, or need to make a set
of variations of a given image.

Note

You can merge all visible layers by selecting everything first Layer » Select
» Visible Layers. Then Combine them all by merging Layer » Merge with

Layer Below.

These filters and masks are accessible through the right click menu (as shown
in the image below) and the Plus icon on the layer docker.

RIGHT CLICK ON A LAYER
b Layers
Mormal

Opacity: 100%

Properties—.

Layer Style...

Remove

Duplicate Layer ¢ Ctri+

Flatten image Ctrl+5hift+E
Flatten Layer

with Layer Below

Convert

Split Alpha

Isolate Layer
Transparency Mask
Filter Mask...
Transform Mask...

Local Selection

Opague

You can also add a filter as a mask from filter dialog itself, by clicking on the
Create Filter Mask button.

Filter: Gaussian Elur
Default 8 | Edit Presets

Horizontal Radius: 5.00 px

Vertical Radius: 5.00 px

Create Filter Mask

All the filters and masks can also be applied over a group too, thus making it

easy to non-destructively edit multiple layers at once. In the category Layers
and masks you can read more about the individual types of layers and masks.

Layer Docker has more information about the shortcuts and other layer
management workflows.

Selections

Selections allow you to pick a specific area of your artwork to change. This is
useful when you want to move a section of the painting, transform it, or paint
on it without affecting the other sections. There are many selection tools
available that select in different ways. Once an area is selected, most tools
will stay inside that area. On that area you can draw or use gradients to
quickly get colored and/or shaded shapes with hard edges. The selections in
Krita are not limited to the canvas boundary, so you can also selection
portions of the painting that are beyond the canvas boundary.

Creating Selections

The most common selection tools all exist at the bottom of the toolbox. Each
tool selects things slightly differently. The links for each tool go into a more
detailed description of how to use it.

Rectangular Selection ~ F=1 Select the shape of a
Tool k- square.

Elliptical Selection N Select the shape of a
Tool Sa¢ circle.
Click where you want
each point of the
Polygon to be. Double
Polygonal Selection P click to end your
Tool ha’ polygon and finalize

your selection area. Use
the shift + z shortcut
to undo last point.

QOutline Selection Tool

Similar Color Selection
Tool

Contiguous Selection
Tool

Path Selection Tool

Magnetic Selection
Tool

Note

1%

Outline/Lasso tool is
used for a rough
selection by drawing
the outline.

Similar Color Selection
Tool.

Contiguous or “Magic
Wand” selects a field of
color. Adjust the
Fuzziness to allow more
changes in the field of
color, by default limited
to the current layer.

Path select an area
based on a vector path,
click to get sharp
corners or drag to get
flowing lines and close
the path with the Enter
key or connecting back
to the first point.

Magnetic selection
makes a free hand
selection where the
selection snaps to sharp
contrasts in the image.

You can also use the transform tools on your selection, a great way to try
different proportions on parts of your image.

Editing Selections

The tool options for each selection tool gives you the ability to modify your
selection.

Action Modifier = Shortcut Description

Replace Ctrl R Replace the current selection.

Intersect Shift + B Get thg overlapping section of both
Alt selections.

Add the new selection to the current

Add Shift A :
selection.
Subtract Al S Subtre.lct the selection from the current
selection.
Symmetric B Make a selection where both the new
Difference and current do not overlap.

You can change this in Tools Settings.

If you hover over a selection with a selection tool and no selection is

activated, you can move it. To quickly go into transform mode, -/ and
select Edit Selection.

Removing Selections

If you want to delete the entire selection, the easiest way is to deselect
everything. Select » Deselect. Shortcut Ctrl + shift + A. When you have
one of the selection tool active, and the mode of selection is in intersect,

replace or symmetric difference then you can also deselect by just @
anywhere on the canvas.

Display Modes

In the bottom left-hand corner of the status bar there is a button to toggle how
the selection is displayed. The two display modes are the following:
(Marching) Ants and Mask. The red color with Mask can be changed in the
preferences. You can edit the color under Settings » Configure Krita... »
Display » Selection Overlay. If there is no selection, this button will not do
anything.

Concept Line Pixel Art

Ants display mode (default) is best if you want to see the areas that are not
selected.

4

D Concept Line Pixel Art

Mask display mode is good if you are interested in seeing the various
transparency levels for your selection. For example, when you have a
selection with very soft edges due using feathering.

Changed in version 4.2: Mask mode is activated as well when a selection
mask is the active layer so you can see the different selection levels.

Global Selection Mask (Painting a Selection)

The global Selection Mask is your selection that appears on the layers docker.
By default, this is hidden, so you will need to make it visible via Select »
Show Global Selection Mask.

LE}:EFE Tool Options

*@

Once the global Selection Mask is shown, you will need to create a selection.
The benefit of using this is that you can paint your selection using any of the

normal painting tools, including the transform and move. The information is

saved as grayscale.

You can enter the global selection mask mode quickly from the selection

tools by doing @ and select Edit Selection.

Selection from layer transparency

You can create a selection based on a layer’s transparency by right-clicking
on the layer in the layer docker and selecting Select Opaque from the context
menu.

New in version 4.2: You can also do this for adding, subtracting and

intersecting by going to Select > Select Opaque, where you can find specific
actions for each.

If you want to quickly select parts of layers, you can hold the ctrl + -/
shortcut on the layer thumbnail. To add a selection do ctrl + shift + \./,

to remove Ctrl + Alt + “./ and to intersect Ctrl + Shift + Alt + ‘_/.
This works with any mask that has pixel or vector data (so everything but
transform masks).

Pixel and Vector Selection Types

Vector selections allow you to modify your selection with vector anchor
tools. Pixel selections allow you to modify selections with pixel information.
They both have their benefits and disadvantages. You can convert one type of
selection to another.

Tool Options

Rectangular Selection

Mode: lh |

Action:) m o Wy Mg W

When creating a selection, you can select what type of selection you want
from the Mode in the selection tool options: Pixel or Vector. By default this
will be Vector.

Vector selections can be modified as any other vector shape with the Shape
Selection Tool, if you try to paint on a vector selection mask it will be
converted into a pixel selection. You can also convert vector shapes to
selection. In turn, vector selections can be made from vector shapes, and
vector shapes can be converted to vector selections using the options in the
Selection menu. Krita will add a new vector layer for this shape.

One of the most common reasons to use vector selections is that they give

you the ability to move and transform a selection without the kind of resize
artifacts you get with a pixel selection. You can also use the Shape Edit Tool
to change the anchor points in the selection, allowing you to precisely adjust
bezier curves or add corners to rectangular selections.

If you started with a pixel selection, you can still convert it to a vector
selection to get these benefits. Go to Select » Convert to Vector Selection.

Note

If you have multiple levels of transparency when you convert a selection to
vector, you will lose the semi-transparent values.

Common Shortcuts while Using Selections

Copy —Ctrl + CcorcCtrl + Ins

Paste —Ctrl + vor shift + Ins

Cut—ctrl + X, Shift + Del

Copy From All Layers — ctrl + Shift + C
Copy Selection to New Layer — ctrl + Alt + J
Cut Selection to New Layer — Ctrl + Shift + J
Display or hide selection with ctrl + H

e Select Opaque — Ctrl + @ on layer thumbnail.
e Select Opaque (Add) —ctrl + shift + @ on layer thumbnail.
e Select Opaque (Subtract) —ctrl + Alt + @ on layer thumbnail.

e Select Opaque (Intersect) — Ctrl + Shift + Alt + ‘-/ on layer
thumbnail.

Python Scripting

This section covers python scripting.

Contents:

e Managing Python plugins
o How to install a Python plugin

o How to get to the plugin?
o How to enable and disable a plugin?

e Introduction to Python Scripting
o What is Python Scripting?

o Technical Details
e How to make a Krita Python plugin
Getting Krita to recognize your plugin
Creating an extension
Creating configurable keyboard shortcuts
Creating a docker
PyQt Signals and Slots
A note on unit tests
Conclusion

O O O O O O o

Managing Python plugins
How to install a Python plugin

Caution

Custom Python plugins are made by users of Krita and the Krita team does
not guarantee that they work, that they are useful or that they are safe. Note
that a Python plugin can do everything that Krita can do, which means for
example access to your files. Krita team isn’t responsible for any damage
you might suffer from the plugin and you install it on your own risk.

Using Python plugin importer

Note

This method doesn’t always import action files (responsible for shortcuts)
correctly.

You need to ensure that you have the plugin in a *. zip file. Inside the zip file
there should be a file pluginname.desktop and a folder pluginname (instead
of pluginname there should be an actual unique name of the plugin).

Go to Tools » Scripts » Import Python Plugin..., find the *.zip file and press
OK. Restart Krita.

Go to Configure Krita » Python Plugins Manager, find the plugin and enable
it. Restart Krita.

Now the plugin should be available.

Manually

If the plugin is inside a *.zip archive, you need to extract it first.

Go to Settings » Manage Resources » Open Resource Folder. Put file
pluginname.desktop and folder pluginname (instead of pluginname there
should be an actual unique name of the plugin) inside the pykrita folder. Put
file pluginname.action into the actions folder. Restart Krita.

Now the plugin should be available.

How to get to the plugin?

Plugins in Krita are either dockers or extensions.
If it’s an extension, it will be available in the menu Tools > Scripts.
If it’s a docker, you can find it in Settings » Dockers.

If the plugin has any shortcuts and you imported the action file properly, you
can change the shortcuts in Configure Krita » Keyboard Shortcuts.

How to enable and disable a plugin?

You can enable and disable all plugins (no matter if they’re pre-installed or
custom) in Configure Krita » Python Plugins Manager.

Introduction to Python Scripting

New in version 4.0.

When we offered python scripting as one of Kickstarter Stretchgoals we
could implement next to vectors and text, it won the backer vote by a
landslide. Some people even only picked python and nothing else. So what
exactly is python scripting?

What is Python Scripting?

Python is a scripting language, that can be used to automate tasks. What
python scripting in Krita means is that we added an API to krita, which is a
bit of programming that allows python to access to parts of Krita. With this
we can make dockers, perform menial tasks on a lot of different files and
even write our own exporters. People who work with computer graphics, like
VFX and video game artists use python a lot to make things like sprite sheets,
automate parts of export and more.

It is outside the scope of this manual to teach you python itself. However, as
python is an extremely popular programming language and great for
beginners, there’s tons of learning material around that can be quickly found
with a simple ‘learn python’ internet search.

This manual will instead focus on how to use python to automate and extend
Krita. For that we’ll first start with the basics: How to run Python commands
in the scripter.

How to Enable the Scripter Plugin

The scripter plugin is not necessary to use python, but it is very useful for
testing and playing around with python. It is a python console, written in
python, which can be used to write small scripts and execute them on the fly.

To open the scripter, navigate to Tools » Scripts » Scripter. If you don’t see it

listed, go to Settings » Configure Krita... » Python Plugin Manager and
toggle “Scripter” in the list to enable it. If you don’t see the scripter plugin,
make sure you are using an up-to-date version of Krita.

The scripter will pop up with a text editor window on top and an output
window below. Input the following in the text area:

print("hello world")

Press the big play button or press the Ctrl + R shortcut to run the script.
Then, below, in the output area the following should show up:

==== Warning: Script not saved! ====
hello world

Now we have a console that can run functions like print() from the Python
environment - but how do we use it to manage Krita?

Running basic Krita commands

To allow Python to communicate with Krita, we will use the Krita module.
At the top of every script, we will write: from krita import *

This allows us to talk to Krita through Krita.instance(). Let’s try to double
our coding abilities with Python.

from krita import *

Krita.instance().action('python_scripter').trigger()

You should see a second scripter window open. Pretty neat! Here is a slightly
more advanced example.

from krita import *

d = Krita.instance().createbDocument(512, 512, "Python test docume
Krita.instance().activeWindow() .addView(d)
£ >

This will open up a new document. Clearly Python gives you quite a lot of
control to automate Krita. Over time we expect the community to write all

kinds of scripts that you can use simply by pasting them in the scripter.

But what if you want to write new commands for yourself? The best place to
start is very simple: search for examples written by other people! You can
save a lot of time if someone else has written code that you can base your
work on. It’s also worth looking through the python plugins, which are
located in /share/krita/pykrita. There’s also a step by step guide for How to
make a Krita Python plugin here in the manual.

But it’s likely that you need more information. For that, we will need see
what’s hidden behind the asterisk when you import * from Krita. To learn
what Krita functions that are available and how to use them, you will want to
go for Krita API reference documentation.

Krita’s API

e [ibKis API Overview [https://api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/index.html]

e Kirita class documentation [https://api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/classKrita.html]

Those pages may look like a lot of jargon at first. This is because Krita’s API
documentation comes from the underlying C++ language that Krita is written
in. The magic happens because of a Python tool called SIP, which makes it
possible for python speak in C++ and talk to Krita. The end result is that
when we import krita and call functions, we’re actually using the C++
methods listed in that documentation.

Let’s see how this stuff works in more detail. Let’s take a look at the second
link, the Krita class reference [https:/api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/classKrita.html#aa55507903d088013ced2df8c74f28a63]. There we
can see all the functions available to the Krita instance. If you type
dir(Krita.instance()) in Python, it should match this page very closely - you
can view the documentation of the functions createDocument(),
activeWindow(), and action() which we used above.

One of the more confusing things is seeing all the C++ classes that Krita uses,
including the Qt classes that start with Q. But here is the beauty of SIP: it

https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/index.html
https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classKrita.html
https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classKrita.html#aa55507903d088013ced2df8c74f28a63

tries to make the translation from these classes into Python as simple and
straightforward as possible. For example, you can see that the function
filters() returns a QStringList. However, SIP converts those QStringLists into
regular python list of strings!

from krita import *

print(Krita.instance().filters())

Outputs as:

['asc-cdl', 'autocontrast', 'blur', 'burn', 'colorbalance', 'colo
'desaturate', 'dodge', 'edge detection', 'emboss', 'emboss all di
"emboss horizontal only', 'emboss laplascian', 'emboss vertical o
'gradientmap', 'halftone', 'height to normal', 'hsvadjustment',6 '
'maximize', 'mean removal', 'minimize', 'motion blur', 'noise',6 '
'pixelize', 'posterize', 'raindrops', 'randompick', 'roundcorners
'wave', 'waveletnoisereducer']

£ >

However, sometimes the conversion doesn’t go quite as smoothly.

from krita import *

print(Krita.instance().documents())

gives something like this:

[<PyKrita.krita.Document object at Ox7f7294630b88>,
<PyKrita.krita.Document object at 0x7f72946309d8>,
<PyKrita.krita.Document object at Ox7f7294630c18>]

It is a list of something, sure, but how to use it? If we go back to the Krita
apidocs page and look at the function, documents() we’ll see there’s actually
a clickable link on the ‘Document’ class. If vou follow that link
[https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classDocument.html], you 11
see that the document has a function called name() which returns the name of
the document, and functions width() and height() which return the
dimensions. So if we wanted to generate an info report about the documents
in Krita, we could write a script like this:

from krita import *

https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classDocument.html

for doc in Krita.instance().documents():
print(doc.name())
print(" "+str(doc.width())+"x"+str(doc.height()))

We get an output like:

==== Warning: Script not saved! ====
Unnamed

2480x3508

sketch21

3508x2480

Blue morning

1600x900

Hopefully this will give you an idea of how to navigate the API docs now.

Krita’s API has many more classes, you can get to them by going to the top-
left class list, or just clicking their names to get to their API docs. The
functions print() or dir() are your friends here as well. This line will print out
a list of all the actions in Krita - you could swap in one of these commands
instead of ‘python_scripter’ in the example above.

[print([a.objectName(), a.text()]) for a in Krita.instance().acti
€ >

The Python module inspect was designed for this sort of task. Here’s a
useful function to print info about a class to the console.

import inspect
def getInfo(target):
[print(item) for item in inspect.getmembers(target) if not it

getInfo(Krita.instance())
€ >

Finally, in addition to the LibKis documentation, the Qt documentation, since
Krita uses PyQt to expose nearly all of the Qt API to Python. You can build
entire windows with buttons and forms this way, using the very same tools
that Krita is using! You can read the Qt documentation [https://doc.qt.io/] and the
PyQt documentation [https:/www.riverbankcomputing.com/static/Docs/PyQt5/] for more
info about this, and also definitely study the included plugins as well to see

https://doc.qt.io/
https://www.riverbankcomputing.com/static/Docs/PyQt5/

how they work.

Technical Details

Python Scripting on Windows

To get Python scripting working on Windows 7/8/8.1, you will need to install
the Universal C Runtime from Microsoft’s website [https:/www.microsoft.com/en-
us/download/details.aspx?id=48234]. (Windows 10 already comes with it.)

Python 2 and 3

By default Krita is compiled for python 3.

However, it is possible to compile it with python 2. To do so, you will need
to add the following to the cmake configuration line:

-DENABLE_PYTHON_2=0N

https://www.microsoft.com/en-us/download/details.aspx?id=48234

How to make a Krita Python plugin

You might have some neat scripts you have written in the Scripter Python
runner, but maybe you want to do more with it and run it automatically for
instance. Wrapping your script in a plugin can give you much more flexibility
and power than running scripts from the Scripter editor.

Okay, so even if you know python really well, there are some little details to
getting Krita to recognize a python plugin. So this page will give an overview
how to create the various types of python script unique to Krita.

These mini-tutorials are written for people with a basic understanding of
python, and in such a way to encourage experimentation instead of plainly
copy and pasting code, so read the text carefully.

Getting Krita to recognize your plugin

A script in Krita has two components - the script directory (holding your
script’s Python files) and a “.desktop” file that Krita uses to load and register
your script. For Krita to load your script both of these must put be in the
pykrita subdirectory of your Krita resources folder (on Linux
~/.local/share/krita/pykrita). To find your resources folder start Krita and
click the Settings » Manage Resources... menu item. This will open a dialog
box. Click the Open Resources Folder button. This should open a file
manager on your system at your Krita resources folder. See the API
[https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/index.html] docs under
“Auto starting scripts”. If there is no pykrita subfolder in the Krita resources
directory use your file manager to create one.

Scripts are identified by a file that ends in a .desktop extension that contain
information about the script itself.

Therefore, for each proper plugin you will need to create a folder, and a
desktop file.

https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/index.html

The desktop file should look as follows:

[Desktop Entry]

Type=Service
ServiceTypes=Krita/PythonPlugin
X-KDE-Library=myplugin
X-Python-2-Compatible=false
X-Krita-Manual=myPluginManual.html
Name=My Own Plugin

Comment=0ur very own plugin.

Type
This should always be service.

ServiceTypes
This should always be Krita/PythonPlugin for python plugins.

X-KDE-Library
This should be the name of the plugin folder you just created.

X-Python-2-Compatible
Whether it is python 2 compatible. If Krita was built with python 2
instead of 3 (-DENABLE_PYTHON_2=0N in the cmake configuration), then
this plugin will not show up in the list.

X-Krita-Manual
An Optional Value that will point to the manual item. This is shown in
the Python Plugin manager. If it’s an HTML file it’ll be shown as rich
text [https://doc.qt.io/qt-5/richtext-html-subset.html], if not, it’ll be shown as plain
text.

Name
The name that will show up in the Python Plugin Manager.

Comment
The description that will show up in the Python Plugin Manager.

Krita python plugins need to be python modules, so make sure there’s an
__init__.py script, containing something like...

https://doc.qt.io/qt-5/richtext-html-subset.html

from .myplugin import *

Where .myplugin is the name of the main file of your plugin. If you restart
Krita, it now should show this in the Python Plugin Manager in the settings,
but it will be grayed out, because there’s no myplugin.py. If you hover over
disabled plugins, you can see the error with them.

Note

You need to explicitly enable your plugin. Go to the Settings menu, open
the Configure Krita dialog and go to the Python Plugin Manager page and

enable your plugin.

Summary
In summary, if you want to create a script called myplugin:

¢ in your Krita resources/pykrita directory create
o a folder called myplugin
o a file called myplugin.desktop

¢ in the myplugin folder create
o afile called __init__.py
o a file called myplugin.py

e inthe __init__.py file put this code:
from .myplugin import *
e in the desktop file put this code:

[Desktop Entry]

Type=Service
ServiceTypes=Krita/PythonPlugin
X-KDE-Library=myplugin
X-Python-2-Compatible=false
Name=My Own Plugin

Comment=0ur very own plugin.

e write your script in the “’myplugin/myplugin.py’’ file.

Creating an extension

Extensions [https://api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/classExtension.html] are relatively simple python scripts that
run on Krita start. They are made by extending the Extension class, and the
most barebones extension looks like this:

from krita import *
class MyExtension(Extension):

def __init__ (self, parent):
This 1is initialising the parent, always important when
super().__init__ (parent)

def setup(self):
pass

def createActions(self, window):
pass

And add the extension to Krita's 1list of extensions:
Krita.instance().addExtension(MyExtension(Krita.instance()))
£ >

This code of course doesn’t do anything. Typically, in createActions we add
actions to Krita, so we can access our script from the Tools menu.

First, let’s create an action [https:/api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/classAction.html]. We can do that easily with
Window.create Action() [https:/api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/classWindow.html#a72ec58e53844076c1461966c34a9115c]. Krita
will call createActions for every Window that is created and pass the right
window object that we have to use.

So...

def createActions(self, window):
action = window.createAction('"myAction'", "My Script", "tools/
< >

https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classExtension.html
https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classAction.html
https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classWindow.html#a72ec58e53844076c1461966c34a9115c

“myAction”
This should be replaced with a unique id that Krita will use to find the
action.

“My Script”
This is what will be visible in the tools menu.

If you now restart Krita, you will have an action called “My Script”. It still
doesn’t do anything, because we haven’t connected it to a script.

So, let’s make a simple export document script. Add the following to the
extension class, make sure it is above where you add the extension to Krita:

def exportDocument(self):
Get the document:
doc = Krita.instance().activeDocument()
Saving a non-existent document causes crashes, so lets chec
if doc is not None:
This calls up the save dialog. The save dialog returns
fileName = QFileDialog.getSaveFileName()[0O]
And export the document to the fileName location.
InfoObject 1is a dictionary with specific export options
doc.exportImage(fileName, InfoObject())
< >

And add the import for QFileDialog above with the imports:

from krita import *
from PyQt5.QtwWidgets import QFileDialog

Then, to connect the action to the new export document:

def createActions(self, window):
action = window.createAction("myAction", "My Script")
action.triggered.connect(self.exportbDocument)

This is an example of a signal/slot connection [https://doc.qt.io/qt-
5/signalsandslots.html], which Qt applications like Krita use a lot. We’ll go over
how to make our own signals and slots a bit later.

Restart Krita and your new action ought to now export the document.

https://doc.qt.io/qt-5/signalsandslots.html

Creating configurable keyboard shortcuts

Now, your new action doesn’t show up in Settings » Configure Krita »
Keyboard Shortcuts.

Krita, for various reasons, only adds actions to the shortcuts menu when they
are present in an .action file. The action file to get our action to be added to
shortcuts should look like this:

<?xml version="1.0" encoding="UTF-8"7?>
<ActionCollection version="2" name="Scripts'">
<Actions category="Scripts">
<text>My Scripts</text>

<Action name="myAction">
<icon></icon>
<text>My Script</text>
<whatsThis></whatsThis>
<toolTip></toolTip>
<iconText></iconText>
<activationFlags>10000</activationFlags>
<activationConditions>0</activationConditions>
<shortcut>ctrl+alt+shift+p</shortcut>
<isCheckable>false</isCheckable>
<statusTip></statusTip>
</Action>
</Actions>
</ActionCollection>

<text>My Scripts</text>
This will create a sub-category under scripts called “My Scripts” to add
your shortcuts to.

name
This should be the unique id you made for your action when creating it in
the setup of the extension.

icon
the name of a possible icon. These will only show up on KDE plasma,

because Gnome and Windows users complained they look ugly.

text

The text that it will show in the shortcut editor.

whatsThis
The text it will show when a Qt application specifically calls for ‘what is
this’, which is a help action.

toolTip
The tool tip, this will show up on hover-over.

iconText
The text it will show when displayed in a toolbar. So for example,
“Resize Image to New Size” could be shortened to “Resize Image” to
save space, so we’d put that in here.

activationFlags
This determines when an action is disabled or not.

activationConditions
This determines activation conditions (e.g. activate only when selection is
editable). See the code [https://cgit.kde.org/krita.git/tree/libs/ui/kis_action.h#n76] for
examples.

shortcut
Default shortcut.

isCheckable
Whether it is a checkbox or not.

statusTip
The status tip that is displayed on a status bar.

Save this file as “myplugin.action” where myplugin is the name of your
plugin. The action file should be saved, not in the pykrita resources folder,
but rather in a resources folder named “actions”. (So, share/pykrita is where
the python plugins and desktop files go, and share/actions is where the action
files go) Restart Krita. The shortcut should now show up in the shortcut
action list.

https://cgit.kde.org/krita.git/tree/libs/ui/kis_action.h#n76

Creating a docker

Creating a custom docker [https://api.kde.org/extragear-api/graphics-
apidocs/krita/libs/libkis/html/classDockWidget.html] 1S much like creating an extension.
Dockers are in some ways a little easier, but they also require more use of
widgets. This is the barebones docker code:

from PyQt5.QtwWidgets import *
from krita import *

class MyDocker (DockwWidget):

def __init_ (self):
super().__init_ ()
self.setWindowTitle("My Docker™)

def canvasChanged(self, canvas):
pass

Krita.instance().addDockWidgetFactory(DockWidgetFactory("myDocker
< >

The window title is how it will appear in the docker list in Krita.
canvasChanged always needs to be present, but you don’t have to do
anything with it, so hence just ‘pass’.

For the addDockWidgetFactory...

“myDocker”
Replace this with an unique ID for your docker that Krita uses to keep
track of it.

DockWidgetFactoryBase.DockRight
The location. These can be DockTornOff, DockTop, DockBottom,
DockRight, DockLeft, or DockMinimized

MyDocker
Replace this with the class name of the docker you want to add.

So, if we add our export document function we created in the extension
section to this docker code, how do we allow the user to activate it? First,

https://api.kde.org/extragear-api/graphics-apidocs/krita/libs/libkis/html/classDockWidget.html

we’ll need to do some Qt GUI coding: Let’s add a button!

By default, Krita uses PyQt, but its documentation is pretty bad, mostly
because the regular Qt documentation is really good, and you’ll often find
that the PyQt documentation of a class, say, QWidget
[https://www.riverbankcomputing.com/static/Docs/PyQt5/api/qtwidgets/qwidget.html] 1S like a
weird copy of the regular Qt documentation [https:/doc.qt.io/qt-5/qwidget.html] for
that class.

Anyway, what we need to do first is that we need to create a QWidget, it’s
not very complicated, under setWindowTitle, add:

mainwWidget = Qwidget(self)
self.setWidget(mainwidget)

Then, we create a button:

buttonExportDocument = QPushButton("Export Document", mainwidget)

Now, to connect the button to our function, we’ll need to look at the signals
in the documentation. QPushButton [https://doc.qt.io/qt-5/gpushbutton.html] has no
unique signals of its own, but it does say it inherits 4 signals from
QAbstractButton [https://doc.qt.io/qt-5/qabstractbutton.html#signals], which means that
we can use those too. In our case, we want clicked.

buttonExportDocument.clicked.connect(self.exportDocument)

If we now restart Krita, we’ll have a new docker and in that docker there’s a
button. Clicking on the button will call up the export function.

However, the button looks aligned a bit oddly. That’s because our
mainWidget has no layout. Let’s quickly do that:

mainwWidget.setlLayout (QVBoxLayout())
mainwWidget.layout().addwidget (buttonExportDocument)

Qt has several layouts [https:/doc.qt.io/qt-5/qlayout.html], but the QHBoxI[.ayout and
the QVBoxlLayout [https://doc.qt.io/qt-5/qboxlayout.html] are the easiest to use, they
just arrange widgets horizontally or vertically.

https://www.riverbankcomputing.com/static/Docs/PyQt5/api/qtwidgets/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qpushbutton.html
https://doc.qt.io/qt-5/qabstractbutton.html#signals
https://doc.qt.io/qt-5/qlayout.html
https://doc.qt.io/qt-5/qboxlayout.html

Restart Krita and the button should now be laid out nicely.

PyQt Signals and Slots

We’ve already been using PyQt signals and slots already, but there are times
where you want to create your own signals and slots. As PyQt’s
documentation is pretty difficult to understand
[https://www.riverbankcomputing.com/static/Docs/PyQt5/signals_slots.html], and the way how
signals and slots are created is very different from C++ Qt, we’re explaining
it here:

All python functions you make in PyQt can be understood as slots, meaning
that they can be connected to signals like Action.triggered or
QPushButton.clicked. However, QCheckBox has a signal for toggled, which
sends a boolean. How do we get our function to accept that boolean?

First, make sure you have the right import for making custom slots:

from PyQt5.QtCore import pyqtSlot

(If there’s from PyQt5.QtCore import * already in the list of imports, then
you won’t have to do this, of course.)

Then, you need to add a PyQt slot definition before your function:

@pyqtSlot(bool)
def myFunction(self, enabled):
enabledString = "disabled"
if (enabled == True):
enabledString = "enabled"
print("The checkbox is'"+enabledString)

Then, when you have created your checkbox, you can do something like
myCheckbox.toggled.connect(self.myFunction).

Similarly, to make your own PyQt signals, you do the following:

signal name 1is added to the member variables of the class
signal_name = pyqtSignal(bool, name='signalName')

https://www.riverbankcomputing.com/static/Docs/PyQt5/signals_slots.html

def emitMySignal(self):
And this 1is how you trigger the signal to be emitted.
self.signal_name.emit(True)

And use the right import:

from PyQt5.QtCore import pyqtSignal

To emit or create slots for objects that aren’t standard python objects, you
only have to put their names between quotation marks.

A note on unit tests

If you want to write unit tests for your plugin, have a look at the mock krita
module [https://github.com/rbreu/krita-python-mock].

Conclusion

Okay, so that covers all the Krita specific details for creating python plugins.
It doesn’t handle how to parse the pixel data, or best practices with
documents, but if you have a little bit of experience with python you should
be able to start creating your own plugins.

As always, read the code carefully and read the API docs for python, Krita
and Qt carefully to see what is possible, and you’ll get pretty far.

https://github.com/rbreu/krita-python-mock

Tag Management

Tags are how you organize common types of resources. They can be used
with brushes, gradients, patterns, and even brush tips. You can select them
from a drop-down menu above the resources. Selecting a tag will filter all the
resources by that tag. Selecting the tag of All will show all resources. Krita
comes installed with a few default tags. You can create and edit your own as
well. The tags are managed similarly across the different types of resources.

You can use tags together with the Pop-up Palette for increased productivity.

v Brush Presets x

v+‘.a

FX
A O ER B Bl
AR
- |

Delete this tag

Note

You can select different brush tags in the pop-up palette. This can be a
quick way to access your favorite brushes.

Adding a New Tag for a Brush

By pressing the + next to the tag selection, you will get an option to add a
tag. Type in the name you want and press the Enter key. You will need to go
back to the All tag to start assigning brushes.

Assigning an Existing Tag to a Brush

Right-click on a brush in the Brush Presets Docker. You will get an option to
assign a tag to the brush.

Changing a Tag’s Name

Select the existing tag that you want to have changed from the drop-down.
Press the + icon next to the tag. You will get an option to rename it. Press the
Enter key to confirm. All the existing brushes will remain in the newly
named tag.

Deleting a Tag

Select the existing tag that you want to have removed from the drop-down.
Press the + icon next to the tag. You will get an option to remove it.

Note

The default brushes that come with Krita cannot have their default tags
removed.

Soft Proofing

When we make an image in Krita, and print that out with a printer, the image
tends to look different. The colors are darker, or less dark than expected,
maybe the reds are more aggressive, maybe contrast is lost. For simple
documents, this isn’t much of a problem, but for professional prints, this can
be very sad, as it can change the look and feel of an image drastically.

The reason this happens is simply because the printer uses a different color
model (CMYK) and it has often access to a lower range of colors (called a
gamut).

A naive person would suggest the following solution: do your work within
the CMYK color model! But there are three problems with that:

e Painting in a CMYK space doesn’t guarantee that the colors will be the
same on your printer. For each combination of Ink, Paper and Printing
device, the resulting gamut of colors you can use is different. Which
means that each of these could have a different profile associated with
them.

e Furthermore, even if you have the profile and are working in the exact
color space that your printer can output, the CMYK color space is very
irregular, meaning that the color maths isn’t as nice as in other spaces.
Blending modes are different in CMYK as well.

e Finally, working in that specific CMYK space means that the image is
stuck to that space. If you are preparing your work for different a
CMYK profile, due to the paper, printer or ink being different, you
might have a bigger gamut with more bright colors that you would like
to take advantage of.

So ideally, you would do the image in RGB, and use all your favorite RGB
tools, and let the computer do a conversion to a given CMYK space on the
fly, just for preview. This is possible, and is what we call “’Soft Proofing’’.

On the left, the original, on the right, a view where soft proofing is turned o
subtle due to the lack of really bright colors, but the soft proofed version is sl
the whites of the flowers and slightly less saturated in the greens of

You can toggle soft proofing on any image using the ctrl + Y shortcut.
Unlike other programs, this is per-view, so that you can look at your image
non-proofed and proofed, side by side. The settings are also per image, and
saved into the . kra file. You can set the proofing options in Image » Image
Properties » Soft Proofing.

There you can set the following options:

Profile, Depth, Space
Of these, only the profile is really important. This will serve as the profile
you are proofing to. In a professional print workflow, this profile should
be determined by the printing house.

Intent
Set the proofing Intent. It uses the same intents as the intents mentioned
in the color managed workflow.

Left: Soft proofed image with Adaptation state slider set to max. Right: !
Adaptation State set to minimum.

Adaptation State
A feature which allows you to set whether Absolute Colorimetric will
make the white in the image screen-white during proofing (the slider set
to max), or whether it will use the white point of the profile (the slider set
to minimum). Often CMYK profiles have a different white as the screen,
or amongst one another due to the paper color being different.

Black Point Compensation
Set the black point compensation. Turning this off will crunch the shadow
values to the minimum the screen and the proofing profile can handle,
while turning this on will scale the black to the screen-range, showing
you the full range of grays in the image.

Gamut Warning
Set the color of the out-of-gamut warning.

You can set the defaults that Krita uses in Settings » Configure Krita... »
Color Management.

To configure this properly, it’s recommended to make a test image to print
(and that is printed by a properly set-up printer) and compare against, and
then approximate in the proofing options how the image looks compared to
the real-life copy you have made.

Out of Gamut Warning

The out of gamut warning, or gamut alarm, is an extra option on top of Soft-
Proofing: It allows you to see which colors are being clipped, by replacing
the resulting color with the set alarm color.

This can be useful to determine where certain contrasts are being lost, and to
allow you to change it slowly to a less contrasted image.

Left: View with original image, Right: View with soft proofing and gamut
Krita will save the gamut warning color alongside the proofing options into tk
color that you think will stand out for your current image

You can activate Gamut Warnings with the Ctrl + shift + Y shortcut, but
it needs soft proofing activated to work fully.

Note

Soft Proofing doesn’t work properly in floating-point spaces, and
attempting to force it will cause incorrect gamut alarms. It is therefore
disabled.

Warning

Gamut Warnings sometimes give odd warnings for linear profiles in the

shadows. This is a bug in LCMS, see here [https://ninedegreesbelow.com/bug-
reports/soft-proofing-problems.html] for more info.

https://ninedegreesbelow.com/bug-reports/soft-proofing-problems.html

Vector Graphics

Krita 4.0 has had a massive rewrite of the vector tools. So here’s a page
explaining the vector tools:

What are vector graphics?

Krita is primarily a raster graphics editing tool, which means that most of the
editing changes the values of the pixels on the raster that makes up the image.

BRUSH STROKE

Each pixel is
assigned a color

Vector graphics on the other hand use mathematics to describe a shape.
Because it uses a formula, vector graphics can be resized to any size.

On one hand, this makes vector graphics great for logos and banners. On the
other hand, raster graphics are much easier to edit, so vectors tend to be the
domain of deliberate design, using a lot of precision.

Tools for making shapes

You can start making vector graphics by first making a vector layer (press the
arrow button next to the + in the layer docker to get extra layer types). Then,
all the usual drawing tools outside of the freehand, dynamic and the
multibrush tool can be used to draw shapes.

The path and polyline tool are the tools you used most often on a vector
layer, as they allow you to make the most dynamic of shapes.

On the other hand, the Ellipse and Rectangle tools allow you to draw special
shapes, which then can be edited to make special pie shapes, or for easy
rounded rectangles.

The calligraphy and text tool also make special vectors. The calligraphy tool
is for producing strokes that are similar to brush strokes, while the text tool
makes a text object that can be edited afterwards.

All of these will use the current brush size to determine stroke thickness, as
well as the current foreground and background color.

There is one last way to make vectors: the Vector Image tool. It allows you to
add shapes that have been defined in an SVG file as symbols. Unlike the
other tools, these have their own fill and stroke.

Arranging Shapes

A vector layer has its own hierarchy of shapes, much like how the whole
image has a hierarchy of layers. So shapes can be in front of one another.
This can be modified with the arrange docker, or with the Select Shapes tool.

The arrange docker also allows you to group and ungroup shapes. It also
allows you to precisely align shapes, for example, have them aligned to the
center, or have an even spacing between all the shapes.

Editing shapes

Editing of vector shapes is done with the Select Shapes tool and the Edit
Shapes tool.

The Select Shapes tool can be used to select vector shapes, to group them (via
/), ungroup them, to use booleans to combine or subtract shapes from one

another (via -/), to move them up and down, or to do quick transforms.

Fill

You can change the fill of a shape by selecting it and changing the active
foreground color.

You can also change it by going into the tool options of the Select Shapes
tool and going to the Fill tab.

Vector shapes can be filled with a solid color, a gradient or a pattern.

Stroke

Strokes can be filled with the same things as fills.

However, they can also be further changed. For example, you can add dashes
and markers to the line.

Coordinates

Shapes can be moved with the Select Shapes tool, and in the tool options you
can specify the exact coordinates.

Editing nodes and special parameters

If you have a shape selected, you can double click it to get to the appropriate
tool to edit it. Usually this is the Edit Shape tool, but for text this is the Text
tool.

In the Edit Shape tool, you can move around nodes on the canvas for regular
paths. For special paths, like the ellipse and the rectangle, you can move
nodes and edit the specific parameters in the Tool Options docker.

Working together with other programs

One of the big things Krita 4.0 brought was moving from ODG to SVG.
What this means is that Krita saves as SVG inside KRA files, and that means
we can open SVGs just fine. This is important as SVG is the most popular

vector format.
Inkscape
You can copy and paste vectors from Krita to Inkscape, or from Inkscape to

Krita. Only the SVG 1.1 features are supported, so don’t be surprised if a
mesh gradient doesn’t cross over very well.

Snapping

In Krita 3.0, we now have functionality for Grids and Guides, but of course,
this functionality is by itself not that interesting without snapping.

Snapping is the ability to have Krita automatically align a selection or shape
to the grids and guides, document center and document edges. For Vector
layers, this goes even a step further, and we can let you snap to bounding
boxes, intersections, extrapolated lines and more.

All of these can be toggled using the snap pop-up menu which is assigned to
shift + S shortcut.

Now, let us go over what each option means:

Grids
This will snap the cursor to the current grid, as configured in the grid
docker. This doesn’t need the grid to be visible. Grids are saved per
document, making this useful for aligning your art work to grids, as is the
case for game sprites and grid-based designs.

Pixel
This allows to snap to every pixel under the cursor. Similar to Grid
Snapping but with a grid having spacing = 1px and offset = Opx.

Guides
This allows you to snap to guides, which can be dragged out from the
ruler. Guides do not need to be visible for this, and are saved per
document. This is useful for comic panels and similar print-layouts,
though we recommend Scribus for more intensive work.

Orthogonal (Vector Only)
This allows you to snap to a horizontal or vertical line from existing
vector objects’s nodes (Unless dealing with resizing the height or width
only, in which case you can drag the cursor over the path). This is useful
for aligning object horizontally or vertically, like with comic panels.

Node (Vector Only)
This snaps a vector node or an object to the nodes of another path.

Extension (Vector Only)
When we draw an open path, the last nodes on either side can be
mathematically extended. This option allows you to snap to that. The
direction of the node depends on its side handles in path editing mode.

Intersection (Vector Only)
This allows you to snap to an intersection of two vectors.

Bounding box (Vector Only)
This allows you to snap to the bounding box of a vector shape.

Image bounds

Allows you to snap to the vertical and horizontal borders of an image.

Image center

Allows you to snap to the horizontal and vertical center of an image.

The snap works for the following tools:

13.
14.
15.
16.
17.
18.

Nk

Straight line
Rectangle

Ellipse

Polyline

Path

Freehand path
Polygon

Gradient

Shape Handling tool
The Text-tool

. Assistant editing tools
. The move tool (note that it snaps to the cursor position and not the

bounding box of the layer, selection or whatever you are trying to move)
The Transform tool

Rectangle select

Elliptical select

Polygonal select

Path select

Guides themselves can be snapped to grids and vectors

Snapping doesn’t have a sensitivity yet, and by default is set to 10 screen
pixels.

Animation with Krita

Thanks to the 2015 Kickstarter, Krita has animation. In specific, Krita has
frame-by-frame raster animation. There’s still a lot of elements missing from
it, like tweening, but the basic workflow is there.

To access the animation features, the easiest way is to change your
workspace to Animation. This will make the animation dockers and
workflow appear.

Note

New in version 4.1: The Timeline docker looks a bit different from the
screenshots shown in this tutorial, however you should be able to follow it
if you take care to select options mentioned in text.

Animation curves

To create an animation curve (currently only for opacity) expand the New
Frame button in the Animation dock and click Add Opacity Keyframe. You
can now edit the keyframed value for opacity directly in the “Layers” dock,
adding more keyframes will by default fade from the last to the next
upcoming keyframe in the timeline over the frames between them. See
animation curves for details.

Workflow

In traditional animation workflow, what you do is that you make key frames,
which contain the important poses, and then draw frames in between
(tweening in highly sophisticated animator’s jargon).

For this workflow, there are three important dockers:

1. The Timeline Docker. View and control all of the frames in your
animation. The timeline docker also contains functions to manage your
layers. The layer that are created in the timeline docker also appear on
the normal Layer docker.

2. The Animation Docker. This docker contains the play buttons as well as
the ability to change the frame-rate, playback speed and useful little
options like auto-key framing.

3. The Onion Skin Docker. This docker controls the look of the onion skin,
which in turn is useful for seeing the previous frame.

Introduction to animation: How to make a
walkcycle

The best way to get to understand all these different parts is to actually use
them. Walk cycles are considered the most basic form of a full animation,

because of all the different parts involved with them. Therefore, going over
how one makes a walkcycle should serve as a good introduction.

Setup

First, we make a new file:

CustomDocu... X Dimensions

rofile: sRGB-ell

As canvas color

I* Let's make a walkcyclel]

Cancel

On the first tab, we type in a nice ratio like 1280x1024, set the dpi to 72
(we’re making this for screens after all) and title the document ‘walkcycle’.

In the second tab, we choose a nice background color, and set the background
to canvas-color. This means that Krita will automatically fill in any
transparent bits with the background color. You can change this in Image »
Image Properties. This seems to be most useful to people doing animation, as

the layer you do animation on MUST be semi-transparent to get onion
skinning working.

Note

Krita has a bunch of functionality for meta-data, starting at the Create
Document screen. The title will be automatically used as a suggestion for
saving and the description can be used by databases, or for you to leave
comments behind. Not many people use it individually, but it can be useful
for working in larger groups.

Then hit Create!

Then, to get all the necessary tools for animation, select the workspace
switcher:

The red arrow points at the workspace switcher.

And select the animation workspace.

Which should result in this:

Opacity: 1.00

The animation workspace adds the timeline, animation and onion skin
dockers at the bottom.

Animating
We have two transparent layers set up. Let’s name the bottom one

‘environment’ and the top ‘walkcycle’ by double clicking their names in the
layer docker.

Opacity: 1.00 -

Then, select the ‘walkcycle’ layer and draw a head and torso (you can use
any brush for this).

Now, selecting a new frame will not make a new frame automatically. Krita
doesn’t actually see the ‘walkcycle’ layer as an animated layer at all!

New Frame

Copy Frame

We can make it animatable by adding a frame to the timeline. @ a frame in
the timeline to get a context menu. Choose Create Duplicate Frame.

Attention

If you select Create Blank Frame, the content of the layer will be dropped
and a new blank frame will appear; since you want to preserve the image,
you need to use Create Duplicate Frame.

You can see it has become an animated layer because of the onion skin icon
showing up in the timeline docker.

.
sl Bed - .I

Use the Create Duplicate Frame button to copy the first frame onto the
second. Then, use the Move Tool (switch to it using the T shortcut) with the
shift + 1t shortcut to move the frame contents up.

We can see the difference by turning on the onionskinning:

Now, you should see the previous frame as red.

Warning

Krita sees white as a color, not as transparent, so make sure the animation
layer you are working on is transparent in the bits where there’s no
drawing. You can fix the situation by use the Color to Alpha filter, but
prevention is best.

Opacity: 100%

%)
= walkcycle

FEERERI BN IEEREE R
..III“I”III..

Tint: 100%

Future frames are drawn in green, and both colors can be configured in the
onion skin docker.

Now, we’re gonna draw the two extremes of the walkcycle. These are the
pose where both legs are as far apart as possible, and the pose where one leg
is full stretched and the other pulled in, ready to take the next step.

Now, let’s copy these two... We could do that with the Ctrl + drag
shortcut, but here comes a tricky bit:

Ctrl + @ also selects and deselects frames, so to copy...

o Ctrl + @ to select all the frames you want to select.
e Ctrl + drag. You need to make sure the first frame is ‘orange’,
otherwise it won’t be copied along.

Now then...

4 4

OQ @
O @3

Squashed the timeline docker a bit to save space.

Copy frame 0 to frame 2.

Copy frame 1 to frame 3.

In the animation docker, set the frame-rate to 4.

Select all frames in the timeline docker by dragging-selecting them.
Press play in the animation docker.

Enjoy your first animation!

Sk =

Expanding upon your rough walkcycle

You can quickly make some space by the A1t + drag shortcut on any frame.
This’ll move that frame and all others after it in one go.

Then draw inbetweens on each frame that you add.

L

*socoINNNNNNDNENEEE H N N Tt
..|||||||i|||..

You’ll find that the more frames you add, the more difficult it becomes to
keep track of the onion skins.

You can modify the onion skin by using the onion skin docker, where you

can change how many frames are visible at once, by toggling them on the top
row. The bottom row is for controlling transparency, while below there you
can modify the colors and extremity of the coloring.

» 0 : B e 15 18 2]
SRELLAs | |

Animating with multiple layers

Okay, our walkcycle is missing some hands, let’s add them on a separate
layer. So we make a new layer, and name it hands and...

Our walkcycle is gone from the timeline docker! This is a feature actually. A
full animation can have so many little parts that an animator might want to
remove the layers they’re not working on from the timeline docker. So you
manually have to add them.

New in version 4.3.0: In Krita 4.3.0 and later, all new layers are pinned to
the timeline by default.

Layer Style...

.. ._I: | .

Show in Timeline

To show a layer whether it’s active or not, you can “pin” it to the timeline by

right-clicking @ on the layer in the layer docker, and toggling Pin to
Timeline. We recommend pinning any layers that you’re currently animating
on.

21

a 0 3 2 o = i
- 0 -:Il.......l . . l
150 o |

s nn
c 2acd+HN 8 5 8 A

Exporting

When you are done, select File » Render Animation. To render to a video file,
you’ll need a program called FFmpeg. To learn more, please read Render
Animation.

Settings Help

pacity: 1.00

mpork an

Export animarini...

Enjoy your walkcycle!

Importing animation frames

In Krita you can import animation frames.

First let us take a sprite sheet from Open Game Art. (This is the Libre Pixel
Cup male walkcycle).

We’ll use Image > Split Image to split up the sprite sheet.

Image Split — Krita

The slices are even, so for a sprite sheet of 9 sprites, use 8 vertical slices and
0 horizontal slices. Give it a proper name and save it as png.

Then, make a new canvas, and select File » Import Animation Frames. This
will give you a little window. Select Add images. This should get you a file
browser where you can select your images.

L]

Open Images

|#| | ¢)| mikriea

Places Name 4 size Modified
@Q search
@ Recently Used
[krita
[Desktop
1 File System - R

+ male_walkeycle_2_1.png 10kB 19:21
[male_walkcycle_2_2.png 1,0kB 19:21
[male_walkcycle_2_3.png 992 bytes 19:21
[male_walkcycle_2_4.png 988 bytes 19:21
[male_walkcycle_2_5.png 1,0kB 19:21
[male_walkcycle_2_6.png 1,1kB 19:21
I male_walkcycle_2_7.png 995 bytes 19:21
[male_walkcycle_2_8.png 987 bytes 19:21
] male_walkcycle_2_9.png 1,0kB 19:21

WNNWAar S

[T Documents
[l Music

| Pictures
[@ videos

[Downleads

B OO WIQO%
% LH AAVON

| All supported Formats =

O& i
(= o]

You can select multiple images at once.

ding
Numerical
Timing

Startat 0

Add images... Remove

4

O &
O O

nel) sRGB-elle-V2-srgbtrc.icc

The frames are currently automatically ordered. You can set the ordering with
the top-left two drop-down boxes.

Start
Indicates at which point the animation should be imported.

Step
Indicates the difference between the imported animation and the
document frame rate. This animation is 8 frames big, and the fps of the
document is 24 frames, so there should be a step of 3 to keep it even. As
you can see, the window gives feedback on how much fps the imported
animation would be with the currently given step.

Press OK, and your animation should be imported as a new layer.

B shiftbrush color

W NEHA
30

¥ L4 AAVON

S
O
(@)
A
=)
|
o]
L)
m

0

End: 100
M 4 4 » b

[mly =i
, @ om

Reference

e https://community.kde.org/Krita/Docs/AnimationGuiFeatureslL.ist

e The source for the libre pixel cup male walkmediawiki cycle
[https://opengameart.org/content/liberated-pixel-cup-lpc-base-assets-sprites-map-tiles]

https://community.kde.org/Krita/Docs/AnimationGuiFeaturesList
https://opengameart.org/content/liberated-pixel-cup-lpc-base-assets-sprites-map-tiles

Japanese Animation Template

This template is used to make Japanese-style animation. It is designed on the
assumption that it was used in co-production, so please customize its things
like layer folders according to scale and details of your works.

Basic structure of its layers

Layers are organized so that your work will start from lower layers go to
higher layers, except for coloring layers.

TikEARE: 1008

() () (& (& (& (

-

* 2
* #
e =
- .L-,
e =

9 9 (9 (9 (@ (9 (9 (9 (9 () (9 (9 (9 (& (9 (9
B
‘mBEEE E°
. : EEEEE
(e

. o

[|
<

Its layer contents

from the bottom

Layout Paper
These layers are a form of layout paper. Anime tap holes are prepared on
separate layers in case you have to print it out and continue your drawing
traditionally.

Layout (Background)
These layers will contain background scenery or layouts which are
scanned from a traditional drawing. If you don’t use them, you can
remove them.

Key drafts
These layers are used to draw layouts digitally.

Keys
Where you add some details to the layouts and arrange them to draw
“keys” of animation.

Inbetweening
Where you add inbetweens to keys for the process of coloring, and
remove unnecessary details to finalize keys (To be accurate, I finish
finalization of keys before beginning to add inbetweens).

Coloring (under Inbetweening)
Where you fill areas with colors according to specification of inbetweens.

Time Sheet and Composition sheet
This contains a time sheet and composition sheet. Please rotate them
before using.

Color set
This contains colors used to draw main and auxiliary line art and fill
highlight or shadows. You can add them to your palette.

Basic steps to make animation

Key draft —> assign them into Time sheet (or adjust them on Timeline, then
assign them into Time sheet) —> adjust them on Timeline —> add frames to
draw drafts for inbetweening if you need them —> Start drawing Keys

You can add layers and add them to timeline.

= B LS ACET

" Shadow

AfkEialz

Mew Layer

Add Existing Layer

Blaack

Red

This is due difference between 24 drawing per second, which is used in Full
Animation, and 12 drawing per second and 8 drawings per second, which are
used in Limited Animation, on the Timeline docker.

FAEIL-L: = B 100

il J-hb-bi o4

3

3 1 E 12 1

This is correspondence between Timeline and Time sheet. “Black” layer is to
draw main line art which are used ordinary line art, “Red” layer is to draw red
auxiliary linearts which are used to specify highlights, “Blue” layer is to draw
blue auxiliary linearts which are used to specify shadows, and “Shadow”
layer is to draw light green auxiliary line art which are used to specify darker
shadows. However, probably you have to increase or decrease these layers
according to your work.

TITELE £ CUT SECOND

A-L / [D+ /78

MEMO

Vs ~. —
ATBDSIDIE]T DL AMNBlcCIDIEI]F Sl A[BICIDIE]F |
) Ly | <+
B T4
. t 76
x
EBFLAW || 51 He—= 8
'I__ Bl & migE-
UE i 80
@) 0 82
I
ARSI - [T 1% |TGrden) &EMEHET, 84
.#! | I
| val

Finished keys, you will begin to draw the inbetweens. If you feel Krita is
becoming slow, I recommend you to merge key drafts and keys, as well as to
remove any unnecessary layers.

After finalizing keys and cleaning up unnecessary layers, add inbetweenings,
using Time sheet and inbetweening drafts as reference.

This is its correspondence with Time sheet.

BE21L7

M<K
4p 4 x == <

N I

&)

Ll e BLE
vy B2

Once the vector functionality of Krita becomes better, I recommend you to
use vector to finalize inbetweening.

If you do the colors in Krita, please use Coloring group layer. If you do
colors in other software, I recommend to export frames as .TGA files.

Resolution

I made this template in 300 dpi because we have to print them to use them in
traditional works which still fill an important role in Japanese Anime Studio.
However, if you stick to digital, 150-120 dpi is enough to make animation.
So you can decrease its resolution according to your need.

Originally written by Saisho Kazuki, Japanese professional animator, and
translated by Tokiedian, KDE contributor.

Gamut Masks

New in version 4.2.

Gamut masking is an approach to color formalized by James Gurney, based
on the idea that any color scheme can be expressed as shapes cut out from the
color wheel.

It originates in the world of traditional painting, as a form of planning and
premixing palettes. However, it translates well into digital art, enabling you
to explore and analyze color, plan color schemes and guide your color
choices.

How does it work?

You draw one or multiple shapes on top of the color wheel. You limit your
color choices to colors inside the shapes. By leaving colors out, you establish
a relationship between the colors, thus creating harmony.

Gamut masking is available in both the Advanced and Artistic Color
Selectors.

See also

e Color Wheel Masking, Part 1 by James Gurney
[https://gurneyjourney.blogspot.com/2008/01/color-wheel-masking-part-1.html]

e The Shapes of Color Schemes by James Gurney
[https://gurneyjourney.blogspot.com/2008/02/shapes-of-color-schemes.html]

e Gamut Masking Demonstration by James Gourney (YouTube)
[https://youtu.be/qfE4E5goEIc]

Selecting a gamut mask

For selecting and managing gamut masks open the Gamut Masks Docker:

https://gurneyjourney.blogspot.com/2008/01/color-wheel-masking-part-1.html
https://gurneyjourney.blogspot.com/2008/02/shapes-of-color-schemes.html
https://youtu.be/qfE4E5goEIc

Settings » Dockers » Gamut Masks.

Gamut Masks

All

Gamut Masks docker

In this docker you can choose from several classic gamut masks, like the
‘Atmospheric Triad’, ‘Complementary’, or ‘Dominant Hue With Accent’.
You can also duplicate those masks and make changes to them (3,4), or
create new masks from scratch (2).

Clicking the thumbnail icon (1) of the mask applies it to the color selectors.

See also

e Gamut Masks Docker

In the color selector

You can rotate an existing mask directly in the color selector, by dragging the

rotation slider on top of the selector (2).

The mask can be toggled off and on again by the toggle mask button in the
top left corner (1).

Advanced and Artistic color selectors with a gamut mask

See also

e Artistic Color Selector Docker
e Advanced Color Selector

Editing/creating a custom gamut mask
Tip

To rotate a mask around the center point use the rotation slider in the color
selector.

If you choose to create a new mask, edit, or duplicate selected mask, the

mask template documents open as a new view (1).

There you can create new shapes and modify the mask with standard vector
tools (Vector Graphics). Please note, that the mask is intended to be
composed of basic vector shapes. Although interesting results might arise
from using advanced vector drawing techniques, not all features are
guaranteed to work properly (e.g. grouping, vector text, etc.).

Warning

Transformations done through the transform tool or layer transform cannot
be saved in a gamut mask. The thumbnail image reflects the changes, but
the individual mask shapes do not.

You can Preview the mask in the color selector (4). If you are satisfied with
your changes, Save the mask (5). Cancel (3) will close the editing view
without saving your changes.

File Edit View Image elect Filter Tools Settings Window Help

oBnBE 9 ¢ B 50 AlEE & o
) \ (34,1 MiB) x| © GamutMaskTemplate_1538408289 kra [Modified] (1,5 MiB) [

T

$AVON B4

N %

£

‘_'
O
o)
G
2
L+
il
@
>
N
b

RGB/Alpha (8-bit i...lle-V2-srgbtrc.icc y 00 (1,5 MiB)

Editing a gamut mask

Importing and exporting

Gamut masks can be imported and exported in bundles in the Resource
Manager. See Resource Management for more information.

General Concepts

Learn about general art and technology concepts that are not specific to Krita.
Contents:

e Colors

o Bit Depth
Color Managed Workflow
Mixing Colors
Color Models
Color Space Size
Gamma and Linear
Profiling and Calibration
Scene Linear Painting

o Viewing Conditions
e File Formats

o Compression

o Metadata

o Openness
e Perspective Projection

o QOrthographic

Oblique
Axonometric

Perspective Projection
Practical

Conclusion and afterthoughts

O O O O O O o

O O O O O

Colors

Okay, so... Let’s talk colors!

Colors are pretty, and they’re also pretty fundamental to painting. When
painting, we want to be able to access and manipulate colors easily to do fun
stuff like mixing them together or matching them to create visual harmony
or contrast. We also want to be able to quickly find our favorite shades of
red or favorite tints of blue without thinking or working too hard. All of this
becomes even more important the more colors we have access to!

Naturally, the first thing we do is organize the colors, usually based on what
we see in nature. For example, we tend to order hues in the order that they
appear in a rainbow, and we think about brightness of values as a tonal range
from white to black. Of course, nature itself is tied to physics, and the order
of hues and the concept of brightness has everything to do with the
wavelength and energy of light as it bounces around and eventually enters
our eyes.

In the case of traditional media, we order the colors (hues) by how they
result from mixes of other colors, starting with the subtractive primary
colors: cyan, magenta, yellow. Mixing each primary color with each other
reveals three secondary colors: violet, orange, and green. Mixing between
those colors creates tertiary colors, and so on - the variations of hues between
each named color are practically limitless! Thinking of colors in this way
creates a circle of hues that artists call “the color wheel”’! Each one of these
hues can be made lighter (tint) or darker (shade) by mixing with white or
black, respectively, and any color can be made less saturated (more gray or
muted) by mixing with another color on the opposite side of the color wheel.

0./.

In the digital world of computers color is treated similarly, and we order
colors by the way the screen generates them; each pixel of color on our
screen is produced by combining super tiny red, green, and blue lights of
varying intensities. Unlike mixing paint, where light intensity is subtracted by
pigment and mixing all the colors together produces a muddy brown or gray,
mixing lights is additive - no light at all is obviously black, and mixing all of
the colored lights produces white. As such, we can make a list of possible
primary color intensities:

0% Red 25% Red 50% Red 75% Red 100% Red

Shown above is a table of different intensities of red light. Our screens can
certainly create a lot of shades of red, but we only start to see the power of
pixels when we add in the other primary colors, green and blue, and show the

colors of light that are produced when they are added together! For example,
here’s a table showing various mixes of red and green:

0% Red 25% Red 50% Red 75% Red 100% Red

0% Green

25% Green

50% Green

75% Green

100% Green

But that’s just red and green, what about blue? I guess we can make even

more tables to show what happens when different amounts of blue are added
into the mix:

25%Blue 0% Red 25% Red 50% Red 75% Red 100% Red 50% Blue 0% Red 25% Red 50% Red 75% Red 100% Red

0% Green 0% Green

25% Green 25% Green

50% Green 50% Green

75% Green 75% Green

100% Green 100% Green

75% Blue 0% Red 25% Red 50% Red 75% Red 100% Red 100% Blue 0% Red 25% Red 50% Red 75% Red 100% Red

0% Green 0% Green

25% Green 25% Green
50% Green 50% Green

75% Green 75% Green

100% Green 100% Green

This way of ordering colors is probably familiar to you if you have used
some programs for making internet applications, like Flash. In fact, if we had
made 6 samples instead of 5 per “channel” (that is, per each primary color),
we’d have gotten the 216 websafe colors [https://websafecolors.info/color-chart]!

Showing the colors in a bunch of tables just feels wrong, though, doesn’t it?
That’s because, while our tables are 2D, as we are mixing three primary
colors, color can be thought of as 3D! It’s a bit odd the first time you think
about it this way, but you can actually stack these tables based on the amount
of blue and they become a cube!

https://websafecolors.info/color-chart

This cube is not filled with water, or sand, or even concrete, but colors!
Colors are pretty abstract, and we typically talk about cubes and other 3D
objects that represent abstract ideas as spaces, hence we call this cube a color
space. Because this particular cube uses red, green, and blue as its axes, we
say that our cube is in the RGB color model.

There are many more color models. For example, if we were to balance our
cube on the black corner, the white corner would be right under our finger at
the very top of the cube. And as geometry and maths would have it, if we
were to cut the cube in half as we balanced it, the line from the white point at
the top to the black point at the bottom would be the grayscale.

When you think about a strip of grays running through the middle of the
cube, as we move farther away from that grayscale towards the outer edges
of the cube the colors would begin to become more saturated (colorful and
vivid). The circle of colors around that middle axis of gray would then define
the hue, with a different color in each direction.

This is the basic idea of the HSV, HSL., HSI, and HSY color models. This
particular model is called HSI (hue, saturation, and intensity), because it
maps each unique color to the intensity of the primary colored lights that mix
to create them.

There are other color models, like L*a*b*, where we look at the
corresponding gray value of a color first, and then try to describe it, not it
terms of hue and saturation, but by how red, green, blue, and yellow it is.
Because our brains cannot really comprehend a color that is both green and
red, or yellow and blue, this makes them good polar opposites in a sliding
scale. We call this a perceptual model, as it is based on how we see color
instead of how the color is generated.

Color models describe color spaces, which, in turn, are all sorts of sizes and
shapes as well. Krita allows you to do operations in different models and
spaces, and we call this functionality “Color Management”.

Color Management is necessary for CMYK (subtractive) support, but outside
of that, not many drawing or painting programs offer the feature, as some
developers believe that artists have no need for such functionality. What a
pity! Especially because Color Management allows for far more cool tricks
than just basic CMYK support, and the ability to manipulate colors like a
computer can is perhaps digital painting’s most unique quality!

As Krita is giving almost unprecedented control of color, this unfortunately
means that there are little to no articles out there on how to use color
management for artists or painters. And so, we made this category and hope
to fill it up with relatively short articles explaining color-related concepts in a
light-hearted and visual manner.

We recommend going over the color managed workflow page next - even if
you don’t plan on using it, it will help make sense out of the many features
related to colors and Color Management. Other than that, each article should
stand on its own and can be taken in at your own direction and pace!

Topics:

Bit Depth
Color Managed Workflow

Mixing Colors

Color Models

Color Space Size
Gamma and Linear
Profiling and Calibration
Scene Linear Painting
Viewing Conditions

Bit Depth

Bit depth basically refers to the amount of working memory per pixel you
reserve for an image.

Like how having a A2 paper in real life can allow for much more detail in the
end drawing, it does take up more of your desk than a simple A4 paper.

However, this does not just refer to the size of the image, but also how much
precision you need per color.

To illustrate this, I’ll briefly talk about something that is not even available in
Krita:

Indexed Color

In older programs, the computer would have per image, a palette that
contains a number for each color. The palette size is defined in bits, because
the computer can only store data in bit-sizes.

1bit
Only two colors in total, usually black and white.

4bit (16 colors)
16 colors in total, these are famous as many early games were presented
in this color palette.

8bit
256 colors in total. 8bit images are commonly used in games to save on
memory for textures and sprites.

However, this is not available in Krita. Krita instead works with channels,
and counts how many colors per channel you need (described in terms of
“’bits per channel’’). This is called ‘real color’.

Real Color

\bit droinel 2bit/chamm|l 264 /Clha
2/ Unavne | U /channe| 9'/ chamr:
& wlovsdoto\ bYcolors +otu| S1Z colors

1, 2, and 3bit per channel don’t actually exist in any graphics application ou

imagining them, we can imagine how each bit affects the precision: Usually,

each section in the color cube meaning precision becomes a power of 2 bigg
cube.

4bit per channel (not supported by Krita)
Also known as Hi-Color, or 16bit color total. A bit of an old system, and
not used outside of specific displays.

8bit per channel
Also known as “True Color”, “Millions of colors” or “24bit/32bit”. The
standard for many screens, and the lowest bit-depth Krita can handle.

16bit per channel
One step up from 8bit, 16bit per channel allows for colors that can’t be
displayed by the screen. However, due to this, you are more likely to have
smoother gradients. Sometimes known as “Deep Color”. This color depth
type doesn’t have negative values possible, so it is 16bit precision,
meaning that you have 65536 values per channel.

16bit float

Similar to 16bit, but with more range and less precision. Where 16bit
only allows coordinates like [1, 4, 3], 16bit float has coordinates like
[0.15, 0.70, 0.3759], with [1.0,1.0,1.0] representing white. Because of the
differences between floating point and integer type variables, and because
Scene-referred imaging allows for negative values, you have about 10-
11bits of precision per channel in 16 bit floating point compared to 16 bit
in 16 bit int (this is 2048 values per channel in the 0-1 range). Required
for HDR/Scene referred images, and often known as ‘half floating point’.

32bit float
Similar to 16bit float but with even higher precision. The native color
depth of OpenColor IO, and thus faster than 16bit float in HDR images, if
not heavier. Because of the nature of floating point type variables, 32bit
float is roughly equal to 23-24 bits of precision per channel (16777216
values per channel in the 0-1 range), but with a much wider range (it can
go far above 1), necessary for HDR/Scene-referred values. It is also
known as ‘single floating point’.

This is important if you have a working color space that is larger than your
device space: At the least, if you do not want color banding.

And while you can attempt to create all your images a 32bit float, this will
quickly take up your RAM. Therefore, it’s important to consider which bit
depth you will use for what kind of image.

Color Managed Workflow

You may have heard that Krita has something called color-management. Or
maybe you just wondered what all these ‘color model’ and ‘color profile’
things you can find in the menus mean. Color management is pretty useful
for people who work in digital imaging professionally, and hopefully this
page will explain why.

Basic Info

If you’ve never worked with color management before, and have no clue
what it is, then know that you’ve probably been working in the 8bit RGB
color space with the sSRGB profile. This means you can choose for sRGB
built-in or sSRGB-elle-v2-srgbtrc.icc. With the new color space browser this
profile is marked with (default) when using 8bit.

We’ll go into what these terms mean in the theory, but if you’re here only for
trying to figure out which is the default, you now know it. Maybe, after
reading this, you may feel like changing the default, to get new and
interesting results from filters, blending modes, or just the color smudge
brush.

What is the problem?

To explain the point of color management, you’d first need to learn which
problem color management tries to solve.

Let us imagine a kinder garden:

The class of 28 children is subdivided in groups of 7. Each group has its own
table.

The teacher gives them a painting assignment: They need to paint a red
triangle, a blue square, a green circle and put a yellow border around the

three. The kids are very experienced with painting already, so the teacher can
confidently leave the smarter ones to their own devices, and spent more time
on those who need help.

The following results come from painting:

Even though all groups had the same assignment, each group’s result looks
different.

Group 1 had vermillion red, citron yellow and ultramarine blue to their
disposal. This means their triangle looks nice and red, but their circle’s green
is muddy. This is because ultramarine is too dark of a blue to create nice
greens with.

Group 2 had magenta red, citron yellow and cerulean blue. Magenta is a type
of red that is closer to pink, opposed to vermillion, which is closer to orange.
However, their green looks nice because cerulean is a much lighter blue.

Group 3 had vermillion red, citron yellow, emerald green and cerulean blue.
They didn’t mix their green, and thus ended up with a purer color.

Finally, group 4 has vermillion red, citron yellow and cerulean blue. Their
colors probably look like what you imagined.

Now, these are kindergarteners, so this isn’t the largest problem in the world.
However, imagine that something like this happened at a printing company?
Imagine four printers printing the same magazine with wildly different
results? That would be disastrous!

For this purpose, we invented color management.

What is color management?

Color management is, dryly put, a set of systems that tries to have the same
color translate properly between color devices.

It usually works by attempting to convert a color to the reference color space
XYZ. XYZ is a coordinate system that has a spot for all colors that the
average human eye can see.

From XYZ it can then be translated back into another device space, such as
RGB (for screens), or CMYK (for printers).

Krita has two systems dedicated to color management. On the one hand, we
have lcms2, which deal with ICC profiles, and on the other, we have OCIO,
which deal with LUT color management.

To give a crude estimate, ICC profiles deal with keeping colors consistent
over many interpretations of devices (screens, printers) by using a reference
space, and OCIO deals with manipulating the interpretation of said colors.

Within both we can identify the following color spaces:

Device spaces
Device spaces are those describing your monitor, and have to be made
using a little device that is called “colorimeter”. This device, in
combination with the right software, measures the strongest red, green
and blue your screen can produce, as well as the white, black and gray it
produces. Using these and several other measurements it creates an ICC
profile unique to your screen. You set these in Krita’s color management
tab. By default we assume sRGB for screens, but it’s very likely that your
screen isn’t exactly fitting SRGB, especially if you have a high quality
screen, where it may be a bigger space instead. Device spaces are also
why you should first consult with your printer what profile they expect.
Many printing houses have their own device profiles for their printers, or
may prefer doing color conversion themselves. You can read more about
colorimeter usage here.

Working spaces
These are delivered alongside Krita for ICC, and downloadable from the
OCIO website for OCIO. Working spaces are particularly nice to do color
calculations in, which programs like Krita do often. It’s therefore
recommended to have a working space profile for your image.

Aesthetic or Look spaces
These are special spaces that have been deformed to give a certain look to
an image. Krita doesn’t deliver Look profiles for ICC, nor does it yet
support Look spaces for OCIO.

Color managed workflow

Knowing this about these spaces of course doesn’t give you an idea of how to
use them, but it does make it easier to explain how to use them. So let us look

at a typical color management workflow:

Coloy managed workt

Input

@) __ | Working space
7

SEY X

.
N

@®

-«

Screen

Output

A typical example of a color managed workflow. We have input from scannei
we convert to a working space that can be used between different editing softy
to an output space for viewing on screen or printing.

In a traditional color managed workflow, we usually think in terms of real

world colors being converted to computer colors and the other way around.
So, for example photos from a camera or scanned in images. If you have a
device space of such a device, we first assign said device space to the image,
and then convert it to a working space.

We then do all our editing in the working space, and use the working space to
communicate between editing programs. In Krita’s case, due to it having two
color management systems, we use ICC profiles between programs like Gimp
2.9+, Inkscape, digiKam and Scribus, and OCIO configuration between
Blender and Natron.

You also store your working files in the working space, just like how you
have the layers unmerged in the working file, or have it at a very high
resolution.

Sometimes, we apply aesthetic or ‘look’ spaces to an image as part of the
editing process. This is rather advanced, and probably not something to worry
about in Krita’s case.

Then, when we’re done editing, we try to convert to an output space, which is
another device space. This can be CMYK for printers or a special screen
RGB profile. When you are dealing with professional printing houses, it is
best to ask them about this step. They have a lot of experience with doing the
best conversion, and may prefer to do the conversion from your working
space to the device space of their printers.

Another form of output is the way your screen displays the color. Unlike
regular output, this one is done all the time during editing: After all, you need
to be able to see what you are doing, but your screen is still a device with a
device space, so it does distort how the image looks. In this manner, you can
see your screen as a set of binoculars you have to look through to see your
image at all.

Therefore, without a profiled monitor, you actually don’t know what the
actual colors you are working with are like, because the computer doesn’t
know the relevant properties of your screen. So if you profiled your monitor,
give Krita the profile in the settings, and select the sSRGB space to draw in,
you are for the first time seeing the actual colors of the SRGB space.

So what does this mean?

coloy varaged W% 5
\ inting T
Avtists Paw'\’(\r\ Krita

Input
(@®

IIRY

L

Working space

SEE XV
‘@909

5 md

Outpul

When we paint from scratch, we can
see our screen profile as the input
space, because we use it to determine
what colors to pick. This somewhat
simplifies the workflow, but makes
the screen profile and viewing
conditions more important.

Now, photographers and people who do a tricky discipline of VFX called
‘color grading’ will go completely mad over trying to get the colors they put
in to come out 100% correctly, and will even count in factors like the time of
day and the color they painted their walls. For example, if the wall behind
your computer is pure red, your eyes will adjust to be less sensitive to red,

which means that the colors they pick in the program could come out redder.
We call these the viewing conditions.

Thankfully, artists have to worry a slight bit less about this. As illustrations
are fully handmade, we are able to identify the important bits and make
appropriate contrasts between colors. This means that even if our images turn
out to be slightly redder than intended, it is less likely the whole image is
ruined. If we look back at the kindergarten example above, we still
understand what the image was supposed to look like, despite there being
different colors on each image. Furthermore, because the colors in
illustrations are deliberately picked, we can correct them more easily on a
later date. Yet, at the same time, it is of course a big drag to do this, and we
might have had much more flexibility had we taken viewing conditions under
consideration.

That said, for artists it is also very useful to understand the working spaces.
Different working spaces give different results with filters and mixing, and
only some working spaces can be used for advanced technology like HDR.

Similarly, Krita, as a program intended to make images from scratch, doesn’t
really worry about assigning workspaces after having made the image. But
because you are using the screen as a binocular to look at your image, and to
pick colors, you can see your screen’s device space as an input space to the
image. Hence why profiling your monitor and giving the profile to Krita in
the settings can help with preparing your work for print and future ventures in
the long run.

Overall, it is kinda useful to keep things like viewing conditions in the back
of your mind. Many professional artists use a mid-gray color as their default
canvas background because they find they create much more dynamic images
due to having improved their viewing conditions. It is also why a lot of
graphics programs, including Krita, come with a dark theme nowadays.
(Though, of course this might also be because dark themes can be considered
cool, who knows.)

ICC profiles

An ICC profile is a set of coordinates describing the extremities of the device
space within XYZ, and it is the color management data you use to
communicate your working space to printers and applications that are
designed for the print industry, such as Gimp, Scribus, Photoshop, Illustrator,
Inkscape, digiKam, RawTheraphee, etc. You have two types of ICC profiles:

Matrix Shaper profiles

These are delivered alongside Krita. Matrix shaper profiles are made by
setting parameters and interpolating between these to get the exact size of
the color space. Due to this, Krita’s color space browser can give you a
lot of information on these profiles. Such profiles are also preferable as
working space.

RE:D 0.‘4'4 O.Sb Q, b

Matrix shaper profiles have a few parameters that describe the
color space which are then interpolated between, this requires
a lot of maths.

cLUT profiles
These are fairly rare, and primarily used to describe printer profiles, such

as CMYK. cLUT, or Color Look-up Table profiles store far more data
than Matrix shaper profiles, so they can hold data of little particularities
caused by, for example, unexpected results from mixing pigments. This is
a far more organic approach to describing a color space, hence why a lot
of programs that don’t care for color management much don’t support
these.

cLUT profiles work by holding tables of each color in a color
space and their respective coordinates in a reference space.
For CMYK this is typically L*A*B* and for the rest XYZ.
These tables are tricky to make, which means these profiles
are a lot rarer.

The interesting thing about ICC profiles is that your working space can be
larger than your device space. This is generally not bad. However, when
converting, you do end up with the question of how to translate the working
space values.

Perceptual
This just squishes the values of the working space into the space it’s
converted to. It’s a nice method to see all possible values in this, but not
so good if you want accurate color reproduction. Use this if you want to

see all colors in an image, or want to express all possible contrasts.
Doesn’t work with Matrix Shaper profiles, defaults to relative
colorimetric.

Absolute Colorimetric
The opposite to Perceptual, Absolute colorimetric will attempt to retain
all the correct colors at whatever cost, which may result in awful looking
colors. Recommended only for reproduction work. Doesn’t work with
Matrix Shaper profiles in Krita due to ICC v4 workflow standards.

Relative Colorimetric
An in between solution between perceptual and absolute, relative will try
to fit whatever colors it can match between color spaces. It does this by
aligning the white and black points. It cuts off the rest to their respective
borders. This is what all matrix shaper profiles default to during
conversion, because the ICC v4 workflow specifies to only use Relative
Colorimetric for matrix shaper profiles.

Saturation
Does anything to retain colorfulness, even hue will be sacrificed. Used in
infographics. Doesn’t work with Matrix Shaper profiles, defaults to
relative colorimetric.

ICC profile version is the last thing to keep in mind when dealing with ICC
profiles. Krita delivers both Version 2 and Version 4 profiles, with the later
giving better results in doing color maths, but the former being more widely
supported (as seen below in ‘Interaction with other applications’). This is also
why Krita defaults to V2, and we recommend using V2 when you aren’t
certain if the other programs you are using support V4.

LUT docker and HDR imaging

The LUT Management is the second important bit of color management in
Krita that is shared between Krita and programs like Blender, Natron and
Nuke, and only uses Look Up Tables that are configured via a config file.

You can set the workingspace of the image under input color space, and the
display to sSRGB or your own LUT if you have added it to the configuration.
View in this case is for proofing transforms to a certain display device.

Component, exposure, gamma, whitepoint and blackpoint are knobs which
allows you to modify the display filter.

| | | | | | | | | | 1 1 1 1 | | | | | | | | 1 | 1 | 1 | | | | | | | |

0.0 1. 2.0

O~ &

As explained before, we can see our monitor as a telescope or binocular into
the world of our picture. Which means it distorts our view of the image a
little. But we can modify this binocular, or display filter to see our image in a
different way. For example, to allow us to see the white in an image that are
whiter than the white of our screen. To explain what that means, we need to
think about what white is.

For example, white, on our monitor is full red, full green and full blue. But
it’s certainly different from white on our paper, or the color of milk, white
from the sun, or even the white of our cell-phone displays.

Black similarly, is brighter on a LCD display than a LED one, and
incomparable with the black of a carefully sealed room.

This means that there’s potentially blacker blacks than screen black, and

white whites than screen white. However, for simplicity’s sake we still assign
the black-point and the white-point to certain values. From there, we can
determine whether a white is whiter than the white point, or a black blacker
than the black-point.

The LUT docker allows us to control this display-filter and modify the
distortion. This is useful when we start modifying images that are made with
scene referred values, such as HDR photos, or images coming out of a render
engine.

So, for example, we can choose to scale whiter-than-screen-white to our

screen-white so we can see the contrasts there.

The point of this is that you can take advantage of more lightness detail in an
image. While you can’t see the difference between screen white and whiter-

than-screen-white (because your screen can’t show the difference), graphics
programs can certainly use it.

A common example is matching the lighting between a 3d model and a real
world scene. Others are advanced photo retouching, with much more contrast
information available to the user. In painting itself, this allows you to create
an image where you can be flippant with the contrast, and allow yourself to
go as bright as you’d like.

LUT docker manipulations are per view, so you can create a new view and
set it to luminosity. This way you can see the image in both color as well as
grayscale and keep a good eye on your values.

Another example is to carefully watch the gradients in a certain section.

Like ICC, the LUT Docker allows you to create a profile of sorts for your
device. In this case it’s the ‘LUT’, which stands for ‘Look Up Table’, and
which can be added to OCIO by modifying the configuration file. When
OCIO is turned on, the configuration in Settings » Configure Krita... » Color
Management is turned off, unless you are using the Internal color engine.

In summary

Krita has two modes of color management:

e [ICC works in terms of spaces relative to the CIEXYZ space, and
requires an ICC profile.

e OCIO works in terms of interpretation, and makes use of LUTs.

e both can be made with a colorimeter.

¢ If you want to have a properly color managed workflow, you have one
made customary for the input device (your screen) and the output
devices (your printer, or target screen). For web the output is always
sRGB.

e Set up your screen profiles under Settings » Configure Krita... > Color
management.

e Do NOT use screen profiles or other device profiles to draw in. Use a
working space profile such as any of the ‘elle’ profiles for this, as the

color maths will be much more predictable and pleasant. Krita will
convert between your screen and working space on the fly, allowing you
to pick the correct colors. This turns your screen into binoculars to view
the image.

e Use the appropriate color management for the appropriate workflow. If
you are working with Blender, you will be better off using OCIO, than
ICC. If you are working with Scribus or Photoshop, use ICC.

Krita does a lot of color maths, often concerning the blending of colors. This
color maths works best in linear color space, and linear color space requires a
bit depth of at the least 16bit to work correctly. The disadvantage is that
linear space can be confusing to work in.

If you like painting, have a decent amount of RAM, and are looking to start
your baby-steps in taking advantage of Krita’s color management, try
upgrading from having all your images in SRGB built-in to SRGB-v2-elle-
g10.icc or rec2020-v2-elle-g10.icc at 16bit float. This’ll give you better color
blending while opening up the possibility for you to start working in HDR!

Note

Some graphics cards, such as those of the NVidia-brand actually have the
best performance under 16bit float, because NVidia cards convert to
floating point internally. When it does not need to do that, it speeds up!

Note

No amount of color management in the world can make the image on your
screen and the image out of the printer have 100% the same color.

Exporting

When you have finished your image and are ready to export it, you can
modify the color space to optimize it:

If you are preparing an image for the web:

e If you use 16bit color depth or higher, convert the image to 8bit color
depth. This will make the image much smaller.

o Krita doesn’t have built-in dithering currently, which means
that 16 to 18bit conversions can come out a bit banded. But
you can simulate it by adding a fill layer with a pattern, set
this fill layer to overlay, and to 5% opacity. Then flatten the
whole image and convert it to 8bit. The pattern will function
as dithering giving a smoother look to gradients.

e Ifit’s a gray-scale image, convert it to gray-scale.

e Ifit’s a color image, keep it in the working space profile: Many web
browsers these days support color profiles embedded into images.
Firefox, for example, will try to convert your image to fit the color
profile of the other monitor (if they have one). That way, the image will
look almost exactly the same on your screen and on other profiled
monitors.

Note

In some versions of Firefox, the colors actually look strange: This is a bug
in Firefox, which is because its color management system is incomplete

[https://ninedegreesbelow.com/galleries/viewing-photographs-on-the-web.html], Save your
PNG, JPG or TIFF without an embedded profile to work around this.

If you are preparing for print:

¢ You hopefully made the picture in a working space profile instead of the
actual custom profile of your screen, if not, convert it to something like
Adobe RGB, sRGB or Rec. 2020.

e Check with the printer what kind of image they expect. Maybe they
expect SRGB color space, or perhaps they have their own profile.

https://ninedegreesbelow.com/galleries/viewing-photographs-on-the-web.html

Interaction with other applications

Blender

If you wish to use Krita’s OCIO functionality, and in particular in
combination with Blender’s color management, you can try to have it use
Blender’s OCIO config.

Blender’s OCIO config is under <Blender -folder>/version
number/datafiles/colormanagement. Set the LUT docker to use the OCIO
engine, and select the config from the above path. This will give you
Blender’s input and screen spaces, but not the looks, as those aren’t
supported in Krita yet.

Windows Photo Viewer

You might encounter some issues when using different applications together.
One important thing to note is that the standard Windows Photo Viewer
application does not handle modern ICC profiles. Krita uses version 4
profiles; Photo Viewer can only handle version 2 profiles. If you export to
JPEG with an embedded profile, Photo Viewer will display your image much
too dark.

Example workflows

Here are some example workflows to get a feeling of how your color
management workflow may look like.

As mentioned before, input for your screen is set via Settings » Configure
Krita... » Color management, or via the LUT docker’s ‘screen space’.
Working space is set via new file per document, or in the LUT docker via
‘input space’.

Webcomic

Input .
N Working space

¢
&
g
.
Rl
3

Input
Your screen profile. (You pick colors via your screen)

Workingspace
sRGB (the default screen profile) or any larger profile if you can spare the
bit depth and like working in them.

Output
sRGB, ICC version 2, sSRGB TRC for the internet, and a specialized
CMYK profile from the printing house for the printed images.

Use the sRGB-elle-V2-srgbtrc.icc for going between Inkscape, Photoshop,
Painttool Sai, Illustrator, Gimp, Manga Studio, Paintstorm Studio, MyPaint,
Artrage, Scribus, etc. and Krita.

If you are using a larger space via ICC, you will only be able to interchange it
between Krita, Photoshop, Illustrator, Gimp 2.9, Manga Studio and Scribus.
All others assume sRGB for your space, no matter what, because they don’t
have color management.

If you are going between Krita and Blender, Nuke or Natron, use OCIO and
set the input space to ‘sRGB’, but make sure to select the sSRGB profile for
ICC when creating a new file.

For the final for the web, convert the image to sRGB 8bit, ‘srgbtrc’, do not

embed the ICC profile. Then, if using PNG, put it through something like
‘pngcrush’ or other PNG optimizers. sSRGB in this case is chosen because you
can assume the vast majority of your audience hasn’t profiled their screen,
nor do they have screens that are advanced enough for the wide gamut stuff.
So hence why we convert to the screen default for the internet, SRGB.

Print
@mm Working space P o
ﬂ — dewo@® — M
5
Output
Input

Your screen profile. (You pick colors via your screen)

Workingspace
sRGB or Rec. 2020 if you can afford the bit-depth being 16bit.

Output
Specialized CMYK profile from the printing house for the printed
images.

The CMYK profiles are different per printer, and even per paper or ink-type
so don’t be presumptuous and ask ahead for them, instead of doing something
like trying to paint in any random CMYK profile. As mentioned in the
viewing conditions section, you want to keep your options open.

You can set the advanced color selector to transform to a given profile via
Settings » Configure Krita... » Color Selector Settings. There, tick Color

Selector Uses Different Color Space than Image and select the CMYK profile
you are aiming for. This will limit your colors a little bit, but keep all the nice
filter and blending options from RGB.

Games

Input .
@mw Working space

g =™ geos

<«

Input
Your screen profile. (You pick colors via your screen)

Workingspace
sRGB or grayscale linear for roughness and specular maps.

Output
This one is tricky, but in the end it’ll be sSRGB for the regular player.

So this one is tricky. You can use OCIO and ICC between programs, but
recommended is to have your images to the engine in SRGB or grayscale.
Many physically based renderers these days allow you to set whether an
image should be read as a linear or ‘srgbtrc’ image, and this is even vital to
have the images being considered properly in the physically based
calculations of the game renderer.

While game engines need to have optimized content, and it’s recommended
to stay within 8bit, future screens may have higher bit depths, and when
renderers will start supporting those, it may be beneficial to develop a
workflow where the working-space files are rather unnecessarily big and you
run some scripts to optimize them for your current render needs, making
updating the game in the future for fancier screens less of a drag.

Normal maps and heightmaps are officially supposed to be defined with a
‘non-color data’ working space, but you’ll find that most engines will not
care much for this. Instead, tell the game engine not to do any conversion on
the file when importing.

Specular, glossiness, metalness and roughness maps are all based on linear
calculations, and when you find that certain material has a metalness of 0.3,
this is 30% gray in a linear space. Therefore, make sure to tell the game
engine renderer that this is a linear space image (or at the very least, should
NOT be converted).

See also

e Visualizing the XYZ color space [https://www.youtube.com/watch?v=x0-
qoXOCOow].

e Basics of gamina correction [https://www.cambridgeincolour.com/tutorials/gamma-
correction.htm].

e Panda3D example of how an image that has gamma encoded without

the 3D renderer being notified of it having gamma-encoding can result
in too dark images [https://www.panda3d.org/blog/the-new-opengl-features-in-panda3d-

1-9/1.
e 2D examples of the effect of gamma-encoding on color maths
[https://ninedegreesbelow.com/photography/linear-gamma-blur-normal-blend.html].
e Basic overview of color management from ArgylICMS manual

[https://www.argyllcms.com/doc/ColorManagement.html].

https://www.youtube.com/watch?v=x0-qoXOCOow
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.panda3d.org/blog/the-new-opengl-features-in-panda3d-1-9/
https://ninedegreesbelow.com/photography/linear-gamma-blur-normal-blend.html
https://www.argyllcms.com/doc/ColorManagement.html

Mixing Colors

Much like physical media, there are many ways to mix colors together in
Krita. Traditional painters and illustrators often use techniques like glazing,
scumbling, and hatching to mix colors directly on their canvas, on top of
mixing colors together on a palette or even within the hairs of their brush.
With a little bit of practice and know-how, and thanks to the variety of
powerful tools in Krita, we can mimic all of these mixing techniques in
digital painting.

In both traditional and digital painting, mixing techniques can be divided into
two major categories: let’s call them “on-canvas” and “off-canvas”.

On-Canvas Mixing

On-canvas mixing techniques are ones where multiple colors are combined
directly on the canvas as the artist paints. This takes a few forms, including
layering semi-transparent color on top of another color, using texture to
change how a color is perceived, or even in the interaction between two areas
of wet paint in traditional media. Bottom line: on-canvas mixing happens
right on the canvas and is a great tool for artistic exploration and “happy
accidents”.

Glazing

In traditional painting, glazing is overlaying many different semi-transparent
layers to create on-canvas color mixtures. Likewise, in digital painting we
can also use glazing to mix colors directly on our canvas. This is one of the
most fundamental and commonly used mixing techniques in digital painting.

We first lay down a semi-transparent layer on top of another color that we

intend to mix with. Then, we pick the resultant color with the ctr1 + ./
shortcut (this can be configured in the canvas input settings), and paint with
that. Depending on our brush’s opacity setting, each time we glaze one color
over another we will get a color that is somewhere between those two colors,
often leading to a nice mixture.

We can mix even more easily with glazing when we set our brush’s flow to a
lower setting. Subtly different than opacity, flow is transparency per dab
instead of stroke, and so it gives us softer strokes without giving up control.

Furthermore, we can combine glazing with various blending modes to
achieve different, interesting effects. For example, glazing with the multiply
blending mode to create nice shadows:

Staring with line art and base colors.

Size: 38.73 px

‘_ - -,
B -~ 88 Multply » [y O | Opacity: 1.00

-
100 200 300 400 500 600 700 gm@
S Sy S N N A] S S |y] O S S N | DO [1 1 | (U | R | SR S 5 B

Using a semi-transparent brush that’s set to multiply, we can add colored
layers to suggest shadows and mid-tones. The multiply blending mode will
darken and interact with each base color differently.

Then, using a brush with low flow (~0.30), we can pick the resulting colors
and lay down more layers. Not only does this help you define the different

planes and forms that are so crucial for creating a sense of depth and three-
dimensionality, it also gives quite a nice, painterly effect!

Continue with a lower opacity and flow to create even smoother gradients.
Make your edges as sharp or smooth as your subject matter and art style
demands!

Smudging

Smudge mixing is done with the Color Smudge Brush Engine, a special
brush engine that allows you to mix your current brush color with the color(s)
under the brush. It’s a very powerful type of brush that gives a lovely
painterly effect. Performance wise, it’s a bit more demanding and slower
than the regular pixel brush.

If you remove all paint from a smudge brush, you get a simple-yet-powerful
smudge effect:

L]/
-

Different smudge brushes have different effects, so be sure to try them all
out!

Scumbling

Scumbling is similar to glazing, except instead of having a semi-opaque

layer, we use layers of textured or patterned paint.

Like most painting programs, Krita allows you to pick a Brush Tips, which
can be used to create a textured effect like that of scumbling.

Krita’s brush engines also allow you to use Texture. This allows you to create
interesting and stylized screentone-like effects.

With glazing can get you pretty far when it comes to defining planes and
forms, scumbling is the best method to create texture and to break up big
pasty flats in your painting.

Off-Canvas Mixing

Off-canvas mixing has basically always been a core tool for artists

everywhere; when we think of the stereotypical artist we might imagine
someone with a few brushes in one hand and a wooden palette in the other.
Whether it’s oils, watercolor, or other traditional media, for the artist to have
absolute control over their colors it’s crucial to have some kind of palette,
plate, jar, or other off-canvas area to mix colors together. While it’s easy to
overlook this in digital painting (where selecting fresh new colors without
mixing at all is both easy and free), Krita has a few very useful and unique
features for off-canvas mixing.

Color Picker Blending

New in version 4.1.

Krita, like almost every art and graphics program, has a Color Selector Tool
which allows you to very quickly sample a color from any pixel on your
canvas. While this tool may seem relatively simple and humble, it is also one
of the most important and commonly used tools in the digital artist’s toolbox
- perhaps only second to the brush! In fact, the color picker tool is at the very
heart of mixing colors, and is often used in combination with on-canvas
techniques like glazing and scumbling to produce smooth blends of color.

And still, there is more to this little tool than meets the eye! Not only can you
configure Krita’s color picker to sample from the average color of a radius of
pixels, Krita’s Color Picker also has a unique blending feature: a powerful
and intuitive tool for off-canvas color mixing!

The Color Picker Blending feature changes the way that picking colors has
traditionally worked for decades; instead of completely replacing your
current brush color with the newly sampled color, blending allows you to
quickly “soak up” some portion of the sampled color, which is then mixed
with your current brush color.

You can use Color Picker Blending much like a physical paint brush in
traditional media. If you were to dip your paint brush into a pool of blue
paint, and then immediately dip again into a pool of red paint and paint a
stroke across your canvas, the stoke wouldn’t be pure red - it would be some
combination of blue and red which would mix to create an intermediate
purple color. Which shade of purple would depend on the ratio of paints that
mix together within the hairs of your brush, and this is essentially what the
Color Picker’s “blend” option controls: what percentage of sampled color is
mixed together with your current brush color!

Not only does Krita’s Color Picker Blending feel even more like mixing
paints, it is also completely off-canvas and independent of opacity, flow,
shape, and other brush settings. Furthermore, unlike most on-canvas mixing
techniques, Color Picker Blending works regardless of the location of colors
on your canvas - enabling you to mix with colors at any position, on any
layer, or even in different documents! Quickly mix lighting colors with local
colors, mix the ambient sky color into shadows, create atmospheric depth,
mix from a preselected palette of colors in another layer/document, etc.

To use Color Picker Blending, simply set the “blend” option in the Tool
Options Docker while the Color Picker Tool is active; setting blend to 100%
will cause your Color Picker to work in the traditional way (completely
replacing your brush color with the picked color), setting to around 50% will
give you a half-way mix between colors, and setting to a lower value will
create more subtle shifts in colors each click. Of course, blending affects both

your dedicated Color Picker Tool as well as the ctrl1 + “./ shortcut.

Note

Clicking and dragging the Color Picker around the canvas currently causes
it to sample many times as it switches pixels. You can use this trait to
quickly soak up more color by “dipping” your color picker into color and
swirling it around. This can be pretty satisfying! However, this also means
that some care must be taken to prevent from accidentally picking up more
color than you want. It’s pretty easy to click a single pixel only one time
using a mouse, but when painting with a drawing tablet and pen it can
sometimes be desirable to use a slightly lower blend setting!

The Digital Colors Mixer

Somewhat hidden away in the Dockers menu (Settings » Dockers > Digital
Colors Mixer), this can be a useful tool for off-canvas mixing. The Digital
Colors Mixer looks a little bit like an audio mixing board that you’d see in a
recording studio, but instead of mixing music it mixes colors! It contains 6
independent color mixers that mix your current brush color with any color of
your choosing.

Brush Preset Hi..

By clicking the color buttons below each mixer you can choose a palette of
colors to mix with. Above each mixer is a color patch that will produce a
color that mixes some amount of your current brush color with the palette
color. Colors towards the top of the mixer will deliver subtle changes to your
current color, while colors towards the bottom will be much closer to the
palette color of that channel.

Other Tips

Outside of making it easier to create smooth gradients, mixing has another
benefit: It allows you to create a cohesive piece.

Limiting the number of colors we use and then mixing tends to give a more
cohesive palette, as we’re not trying to do too much at once. This cohesive
palette in turn means it will become easier to create a certain mood in an
image. Sometimes, mixing in a little bit of accent color can also create
unexpected results which in turn can be a little discovery for the audience to
delight over as they discover the world of your image.

What we can learn from this, is that the next time we select, say, gray, instead
of reaching for a random or generic gray from the Advanced Color Selector,
consider using one of Krita’s many wonderful mixing tools to create an

interesting and fitting gray from hues that are roughly complementary
(opposite each other on the hue wheel).

While on-canvas and off-canvas techniques are fundamentally different
categories of mixing colors, they are not mutually exclusive. All of the
mixing methods in this article have pros and cons; different tools can be
useful for different situations, and combining various techniques can be
extremely powerful and fun!

Finally, mixing colors will often go far better in a higher bit-depth like 16bit,
though it’ll make the image take up much more working memory (RAM).
Furthermore, using a linear color space can often give far better mixtures than
a gamma-corrected one, though doing sketches and line art is easier to do in
a gamma-corrected space.

Color Models

Krita has many different color spaces and models. Following here is a brief
explanation of each, and their use-cases.

RGB

Red, Green, Blue.

These are the most efficient primaries for light-based color mixing, like
computer screens. Adding Red, Green and Blue light together results in
White, and is thus named the additive color wheel.

RGB is used for two purposes:
Images that are meant for viewing on a screen:
e So that could be images for the web, buttons, avatars, or just portfolio
images.
e Or for Video games, both sprites and textures are best in RGB there.

e Or for 3d rendering, visual effects and cg animation.

And for the working space. A working space is an RGB gamut that is really
large and predictable, meaning it’s good for image manipulation. You use
this next to a profiled monitor. This way you can have precise colors while
also being able to view them correctly on multiple screens.

Blending modes in RGB

Color 1 Color 2 Normal Multiply Screen

R GB R G B R GDBR G B R G

R &
G 1.0 0.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 00 0.0 0.0 1.0 1.0

Gray 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.75 0.7t

RGB models: HSV, HSL, HSI and HSY

These are not included as their own color spaces in Krita. However, they do
show up in the blending modes and color selectors, so a brief overview:

—Images of relationship rgb-hsv etc.

Hue
The tint of a color, or, whether it’s red, yellow, green, etc. Krita’s Hue is
measured in 360 degrees, with 0 being red, 120 being green and 240
being blue.

Saturation
How vibrant a color is. Saturation is slightly different between HSV and
the others. In HSV it’s a measurement of the difference between two base
colors being used and three base colors being used. In the others it’s a
measurement of how close a color is to gray, and sometimes this value is
called Chroma. Saturation ranges from 0 (gray) to 100 (pure color).

Value
Sometimes known as Brightness. Measurement of how much the pixel
needs to light up. Also measured from 0 to 100.

Lightness
Where a color aligns between white and black. This value is non-linear,

and puts all the most saturated possible colors at 50. Ranges from 0 to
100.

Intensity
Similar to lightness, except it acknowledges that yellow (1,1,0) is lighter

than blue (0,0,1). Ranges from 0 to 100.

Luma (Y’)
Similar to lightness and Intensity, except it weights the red, green and
blue components based real-life measurements of how much light a color
reflects to determine its lightness. Ranges from 0 to 100. Luma is well
known for being used in film-color spaces.

Grayscale

This color space only registers gray values. This is useful, because by only
registering gray values, it only needs one channel of information, which in
turn means the image becomes much lighter in memory consumption!

This is useful for textures, but also anything else that needs to stay grayscale,
like Black and White comics.

Color1 Color2 Normal Multiply Screen

G G G G G
Gray 0.5 0.5 0.5 0.25 0.75
CMYK

Cyan, Magenta, Yellow, Key

This is the color space of printers. Unlike computers, printers have these four
colors, and adding them all adds up to black instead of white. This is thus
also called a ‘subtractive’ color space.

Color 1 Color 2 Normal Multiply

CcC MY K CMYKCMYKC M Y

R &

G 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.5 0.5 1.0 0.0 0.25 0.25 1.

Gray 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 O.

There’s also a difference between ‘colored gray’ and ‘neutral gray’
depending on the profile.

25% 50% 75%

cCc M Y K CMYKC M Y K

Colored

Gray 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75

Neutral

0.0 00 00 025 00 00 00 05 00 0.0 0.0 0.75
Gray

RGB black | Neutral black Colore d black

15 7185

E A ra L Fy i } 5
U U LU 1r L5 3 Uy Uy Uy nd

In Krita, there’s also the fact that the default color is a perfect
black in RGB, which then gets converted to our default
CMYK in a funny manner, giving a yellow look to the

strokes. Again, another good reason to work in RGB and let
the conversion be done by the printing house.

While CMYK has a smaller ‘gamut’ than RGB, however, it’s still
recommended to use an RGB working space profile to do your editing in.
Afterwards, you can convert it to your printer’s CMYK profile using either
perceptual or relative colorimetric intent. Or you can just give the workspace
rgb image to your printer and let them handle the work.

YCrCb

Luminosity, Red-chroma, Blue-chroma
Y CrCb stands for:

Y'Y
Luma/Luminosity, thus, the amount of light a color reflects.

Cr
Red Chroma. This value measures how red a color is versus how green it
is.

Cb
Blue Chroma. This value measures how blue a color is versus how yellow
it is.

This color space is often used in photography and in (correct)
implementations of JPEG. As a human you’re much more sensitive to the
lightness of colors, and thus JPEG tries to compress the Cr and Cb channels,
and leave the Y channel in full quality.

Warning

Krita doesn’t bundle a ICC profile for YCrCb on the basis of there being no
open source ICC profiles for this color space. It’s unusable without one, and
also probably very untested.

XYZ

Back in 1931, the CIE (Institute of Color and Light), was studying human
color perception. In doing so, they made the first color spaces, with XYZ
being the one best at approximating human vision.

It’s almost impossible to really explain what XYZ is.

Y
Is equal to green.

Z
AKkin to blue.

X
Is supposed to be red.

XYZ is used as a baseline reference for all other profiles and models. All

color conversions are done in XYZ, and all profiles coordinates match XYZ.
L* a*b*
Stands for:

L*
Lightness, similar to luminosity in this case.

a*
a* in this case is the measurement of how magenta a color is versus how
green it is.

b*
b* in this case is a measurement of how yellow a color is versus how blue
a color is.

L*a*b* is supposed to be a more comprehensible variety of XYZ and the
most ‘complete’ of all color spaces. It’s often used as an in between color
space in conversion, but even more as the correct color space to do color-
balancing in. It’s far easier to adjust the contrast and color tone in L*a*b*.

L*a*b* is technically the same as Photoshop’s LAB. Photoshop specifically
uses CIELAB d50.

Filters and blending modes

Maybe you have noticed that blending modes in LAB don’t work like they do
in RGB or CMYK. This is because the blending modes work by doing a bit
of maths on the color coordinates, and because color coordinates are different
per color space, the blending modes look different.

Color Space Size

Using Krita’s color space browser, you can see that there are many different
space sizes.

How do these affect your image, and why would you use them?
There are three primary reasons to use a large space:

1. Even though you can’t see the colors, the computer program does
understand them and can do color maths with it.

2. For exchanging between programs and devices: most CMYK profiles
are a little bigger than our default SRGB in places, while in other places,
they are smaller. To get the best conversion, having your image in a
space that encompasses both your screen profile as your printer profile.

3. For archival purposes. In other words, maybe monitors of the future will
have larger amounts of colors they can show (spoiler: they already do),
and this allows you to be prepared for that.

Let’s compare the following gradients in different spaces:

sRGB

Rec 2020 ¥ee 1070

au/ Adobe RGBH Clau/ Adobe RGB

ALES EGY ACES RGB

On the left we have an artifact-ridden color managed JPEG file with an
ACES sRGBtrc v2 profile attached (or not, if not, then you can see the exact
different between the colors more clearly). This should give an
approximation of the actual colors. On the right, we have an SRGB PNG that
was converted in Krita from the base file.

Each of the gradients is the gradient from the max of a given channel. As you
can see, the mid-tone of the ACES color space is much brighter than the mid-
tone of the RGB colorspace, and this is because the primaries are further
apart.

What this means for us is that when we start mixing or applying filters, Krita
can output values higher than visible, but also generate more correct mixes
and gradients. In particular, when color correcting, the bigger space can help
with giving more precise information.

If you have a display profile that uses a LUT, then you can use perceptual to
give an indication of how your image will look.

Bigger spaces do have the downside they require more precision if you do not

want to see banding, so make sure to have at the least 16bit per channel when
choosing a bigger space.

Gamma and Linear

Now, the situation we talk about when talking theory is what we would call
‘linear’. Each step of brightness is the same value. Our eyes do not perceive
linearly. Rather, we find it more easy to distinguish between darker grays
than we do between lighter grays.

As humans are the ones using computers, we have made it so that computers
will give more room to darker values in the coordinate system of the image.
We call this ‘gamma-encoding’, because it is applying a gamma function to
the TRC or transfer function of an image. The TRC in this case being the
Tone Response Curve or Tone Reproduction Curve or Transfer function
(because color management specialists hate themselves), which tells your
computer or printer how much color corresponds to a certain value.

One of the most common issues people have with Krita’s color management i
right colorspace to the encoded TRC. Above, the center Pepper is the right on
and assigned TRC are the same. To the left we have a Pepper encoded in sk
linear profile, and to the right we have a Pepper encoded with a linear TRC ai
TRC. Image from Pepper & Carrot [https://www.peppercarrot.con

The following table shows how there’s a lot of space being used by lighter
values in a linear space compared to the default SRGB TRC of our modern
computers and other TRCs available in our delivered profiles:

https://www.peppercarrot.com/

Linear TRC

sRGB TRC

LABL*TRC

Rec 709 TRC

Gamma 1.8 TRC

Gamma 2.2TRC

If you look at linear of Rec. 709 TRCs, you can see there’s quite a jump
between the darker shades and the lighter shades, while if we look at the Lab
L* TRC or the sRGB TRC, which seem more evenly spaced. This is due to
our eyes’ sensitivity to darker values. This also means that if you do not have
enough bit depth, an image in a linear space will look as if it has ugly
banding. Hence why, when we make images for viewing on a screen, we
always use something like the Lab L*, SRGB or Gamma 2.2 TRCs to encode
the image with.

However, this modification to give more space to darker values does lead to
wonky color maths when mixing the colors.

We can see this with the following experiment:

Left: Colored circles blurred in a regular SRGB space. Right:
Colored circles blurred in a linear space.

Colored circles, half blurred. In a gamma-corrected environment, this gives
an odd black border. In a linear environment, this gives us a nice gradation.

This also counts for Krita’s color smudge brush:

That’s right, the ‘muddying’ of colors as is a common
complaint by digital painters everywhere, is in fact, a gamma-
corrected colorspace mucking up your colors. If you had been

working in LAB to avoid this, be sure to try out a linear rgb
color space.

What is happening under the hood

Imagine we want to mix red and green.

First, we would need the color coordinates of red and green inside our color
space’s color model. So, that’d be...

Color Red Green Blue

Red 1.0 0.0 0.0

Green 0.0 1.0 0.0

We then average these coordinates over three mixes:

Red Mix1l Mix2 Mix3 Green

Red 1.0 0.75 0.5 0.25 0.0

Green 0.0 0.25 0.5 0.75 1.0

Blue 00 00 00 0.0 0.0

But to figure out how these colors look on screen, we first put the individual
values through the TRC of the color-space we’re working with:

_Linear tre ~__sRGB tre

LAB L frec

Then we fill in the values into the correct spot. Compare these to the values

of the mixture table above!

Linear TRC sRGB TRC LabL*TRC Rec709TRC Gammal8 Gamma22
R G B R G B R G B R G B R G B R G B

Red
Mix 1
Mix 2
Mix 3

Green

And this is why color mixtures are lighter and softer in linear space. Linear
space is more physically correct, but sSRGB is more efficient in terms of
space, so hence why many images have an sSRGB TRC encoded into them. In
case this still doesn’t make sense: SRGB gives largely darker values than
linear space for the same coordinates.

So different TRCs give different mixes between colors, in the following
example, every set of gradients is in order a mix using linear TRC, a mix
using SRGB TRC and a mix using Lab L* TRC.

_Linear tro | ~ sRGB fre __ LAB L tre __

8.7 8.7 - 8.7
8.6 8.6 B.6 .
’
0.5 0.5
8.3
[
{ [
L 2.y 8.1
I
B Z 8.3 8.4 8.5 6.6 8.7 8.8 0.9 1.8 8.6 8.1 0.2 6.3 8,4 8.5 0.6 5.7 0.6 8.9 1.8 5.8 ©.1 B.2 0.3 8.4 8.5 8.5 9.7 6.8 0.9 1.8

So, you might be asking, how do I tick this option? Is it in the settings
somewhere? The answer is that we have several ICC profiles that can be used
for this kind of work:

e scRGB (linear)
o All ‘elle’-profiles ending in ‘g10’, such as SRGB-elle-v2-g10.icc.

In fact, in all the ‘elle’-profiles, the last number indicates the gamma. 1.0 is
linear, higher is gamma-corrected and ‘srgbtrc’ is a special gamma correction
for the original sSRGB profile.

If you use the color space browser, you can tell the TRC from the ‘estimated
gamma’(if it’s 1.0, it’s linear), or from the TRC widget in Krita 3.0, which

looks exactly like the curve graphs above.

Even if you do not paint much, but are for example making textures for a
videogame or rendering, using a linear space is very beneficial and will speed
up the renderer a little, for it won’t have to convert images on its own.

The downside of linear space is of course that white seems very overpowered
when mixing with black, because in a linear space, light grays get more
room. In the end, while linear space is physically correct, and a boon to work
in when you are dealing with physically correct renderers for videogames and
raytracing, Krita is a tool and no-one will hunt you down for preferring the
dark mixing of the sSRGB TRC.

Profiling and Calibration

So to make it simple, a color profile is just a file defining a set of colors
inside a pure XYZ color cube. This “color set” can be used to define different
things:

e the colors inside an image
e the colors a device can output

Choosing the right workspace profile to use depends on how much colors you
need and on the bit depth you plan to use. Imagine a line with the whole color
spectrum from pure black (0,0,0) to pure blue (0,0,1) in a pure XYZ color
cube. If you divide it choosing steps at a regular interval, you get what is
called a linear profile, with a gamma=1 curve represented as a straight line
from O to 1. With 8bit/channel bit depth, we have only 256 values to store
this whole line. If we use a linear profile as described above to define those
color values, we will miss some important visible color change steps and
have a big number of values looking the same (leading to posterization
effect).

This is why was created the SRGB profile to fit more different colors in this
limited amount of values, in a perceptually regular grading, by applying a
custom gamma curve (see picture here: https://en.wikipedia.org/wiki/SRGB)
to emulate the standard response curve of old CRT screens. So sRGB profile
is optimized to fit all colors that most common screen can reproduce in those
256 values per R/G/B channels. Some other profiles like Adobe RGB are
optimized to fit more printable colors in this limited range, primarily
extending cyan-green hues. Working with such profile can be useful to
improve print results, but is dangerous if not used with a properly profiled
and/or calibrated good display. Most common CMYK workspace profile can
usually fit all their colors within 8bit/channel depth, but they are all so
different and specific that it’s usually better to work with a regular RGB
workspace first and then convert the output to the appropriate CMYK profile.

Starting with 16bit/channel, we already have 65536 values instead of 256, so

https://en.wikipedia.org/wiki/SRGB

we can use workspace profiles with higher gamut range like Wide-gamut
RGB or Pro-photo RGB, or even unlimited gamut like scRGB.

But sSRGB being a generic profile (even more as it comes from old CRT
specifications...), there are big chances that your monitor have actually a
different color response curve, and so color profile. So when you are using
sRGB workspace and have a proper screen profile loaded (see next point),
Krita knows that the colors the file contains are within the sSRGB color space,
and converts those sRGB values to corresponding color values from your
monitor profile to display the canvas.

Note that when you export your file and view it in another software, this
software has to do two things:

e read the embed profile to know the “good” color values from the file
(which most software do nowadays; when they don’t they usually
default to SRGB, so in the case described here we’re safe)

e and then convert it to the profile associated to the monitor (which very
few software actually does, and just output to SRGB.. so this can explain
some viewing differences most of the time).

Krita uses profiles extensively, and comes bundled with many.

The most important one is the one of your own screen. It doesn’t come
bundled, and you have to make it with a color profiling device. In case you
don’t have access to such a device, you can’t make use of Krita’s color
management as intended. However, Krita does allow the luxury of picking
any of the other bundled profiles as working spaces.

Profiling devices

Profiling devices, called Colorimeters, are tiny little cameras of a kind that
you connect to your computer via an usb, and then you run a profiling
software (often delivered alongside of the device).

Note

If you don’t have software packaged with your colorimeter, or are unhappy
with the results, we recommend ArgyllCMS [https://www.argyllcms.com/].

The little camera then measures what the brightest red, green, blue, white and
black are like on your screen using a predefined white as base. It also
measures how gray the color gray is.

It then puts all this information into an ICC profile, which can be used by the
computer to correct your colors.

It’s recommended not to change the “calibration” (contrast, brightness, you
know the menu) of your screen after profiling. Doing so makes the profile
useless, as the qualities of the screen change significantly while calibrating.

To make your screen display more accurate colors, you can do one or two
things: profile your screen or calibrate and profile it.

Just profiling your screen means measuring the colors of your monitor with
its native settings and put those values in a color profile, which can be used
by color-managed application to adapt source colors to the screen for optimal
result. Calibrating and profiling means the same except that first you try to
calibrate the screen colors to match a certain standard setting like SRGB or
other more specific profiles. Calibrating is done first with hardware controls
(lightness, contrast, gamma curves), and then with software that creates a
vcgt (video card gamma table) to load in the GPU.

So when or why should you do just one or both?
Profiling only:

With a good monitor
You can get most of the sSRGB colors and lot of extra colors not inside
sRGB. So this can be good to have more visible colors.

With a bad monitor
You will get just a subset of actual SRGB, and miss lot of details, or even
have hue shifts. Trying to calibrate it before profiling can help to get

https://www.argyllcms.com/

closer to full-sRGB colors.
Calibration+profiling:

Bad monitors
As explained just before.

Multi-monitor setup
When using several monitors, and specially in mirror mode where both
monitor have the same content, you can’t have this content color-
managed for both screen profiles. In such case, calibrating both screens to
match sRGB profile (or another standard for high-end monitors if they
both support it) can be a good solution.

Soft-proofing
When you need to match an exact rendering context for soft-proofing,
calibrating can help getting closer to the expected result. Though
switching through several monitor calibration and profiles should be done
extremely carefully.

Scene Linear Painting

Previously referred to as HDR painting and Scene Referred painting, Scene
Linear Painting is doing digital painting in a peculiar type of colorspace. It is
painting in a color space that is...

1. Linear - there’s no gamma encoding, or tone-mapping or whatever going
on with the pixels you manipulate. (This is different from the pixels you
see, but we’ll get to that later)

2. Floating Point - So 16bit or 32bit floating point per channel.

These are the two important characteristics. The colorspace has a few more
properties than this, such as the white point, or more importantly, the
colorants that make up the gamut. But here’s the thing, those two could be
anything, as long as the space is linear and the color depth is floating point.

So, Scene Linear is not a single one colorspace, but a TYPE of colorspace.
You can have a scene linear space that uses the SRGB/Rec. 709 colorants, or
one that uses adobeRGB, or maybe one that uses Rec. 2020, as long as it is
linear and in a floating point bit depth.

Note

If you want to create images for display on an HDR canvas, you will need
to select the Rec. 2020 space profile with a linear gamma. The default
profile in Krita for that is Rec2020-elle-V4-g10.icc.

These two factors are for one reason: To make black and white arbitrary
values. This might seem a bit weird. But when you are dealing with light-
sources, you are dealing with a massive range of contrasts, and will have to
decide afterwards which white and black you’d like to have. This is what the
scene means in scene-linear, the relevant values are unique per scene, like a
real world scene: a flower field lit by moonlight, a city in twilight or a sunny
beach. You want to be able to put the right emphasis on the most important

contrasting values, and being able to choose what is white and what is black
is a very powerful tool here. After all, humans in the real world can see much
more when they get used to the dark, or to the sun, so why not apply that to
how we make our images?

This is also why it needs to be Linear. Gamma and Tone-mapped color
spaces are already choosing which contrast is the most important to you. But
for that, they too need to choose what is white or black. Linear doesn’t make
such assumptions, so much better for when you want to choose yourself. You
will eventually want to stick your image through some tone-mapping or
gamma correction, but only at the end after you have applied filters and
mixed colors!

In fact, there’s always a non-destructive sort of transform going on while you
are working on your image which includes the tone-mapping. This is called a
display or view transform, and they provide a sort of set of binoculars into the
world of your image. Without it, your computer cannot show these colors
properly; it doesn’t know how to interpret it properly, often making the image
too dark. Providing such a transform and allowing you to configure it is the
prime function of color management.

Between different view and display transforms, there’s also a difference in
types. Some are really naive, others are more sophisticated, and some need to
be used in a certain manner to work properly. The ICC color management
can only give a certain type of view transforms, while OCIO color
management in the LUT docker can give much more complex transforms
easily configurable and custom settings that can be shared between programs.

Above, an example of the more naive transform provided by going from sc

regular SRGB, and to the right a more sophisticated transform coming from

OCIO configuration. Look at the difference between the paws. Image by Wo
Westerflier, License: CC-BY-SA

Conversely, transforming and interpreting your image’s colors is the only
thing OCIO can do, and it can do it with really complex transforms, really
fast. It doesn’t understand what your image’s color space is originally,
doesn’t understand what CMYK is, and there’s also no such thing as a OCIO
color profile. Therefore you will need to switch to an ICC workflow if you
wish to prepare for print.

Yes, but what is the point?

The point is making things easier in the long run:

[N

It is easier to keep saturated non-muddy colors in a linear space.

The high bit depth makes it easier to get smoother color mixes.

3. Filters are more powerful and give nicer results in this space. It is far
more easy to get nice blurring and bokeh results.

4. Simple Blending Modes like Multiply or Addition are suddenly black
magic. This is because Scene-Linear is the closest you can get to the
physical (as in, physics, not material) model of color where multiplying
colors with one another is one of the main ways to calculate the effect of
light.

5. Combining painting with other image results such as photography and

physically based rendering is much easier as they too work in such a

type of colorspace. So you could use such images as a reference with

little qualms, or make textures that play nice with such a renderer.

N

So the advantages are prettier colors, cooler filter results, more control and
easier interchange with other methods.

Okay, but why isn’t this all the rage then?

Simply put, because while it’s easier in the long run, you will also have to
drop tools and change habits...

In particular, there are many tools in a digital painter’s toolbox that have
hard-coded assumptions about black and white.

A very simple but massive problem is one with inversion. Inverting colors is
done code-wise by taking the color for white and subtracting the color you
want to invert from it. It’s used in many blending modes. But often the color
white is hardcoded in these filters. There’s currently no application out there
that allows you to define the value range that inversion is done with, so
inverting is useless. And that also means the filters and blending modes that
use it, such as (but not limited to)...

e Screen (invert+multiply+invert)

e Overlay (screens values below midtone-value, in SRGB this would be
middle gray)

e Color-dodge (divides the lower color with an inversion of the top one)

e Color-burn (inverts the lower color and then divides it by the top color)
e Hardlight (a different way of doing overlay, including the inversion)
e Softlight (uses several inversions along the way)

Conversely Multiply, Linear Dodge/Addition (they’re the same thing),
Subtract, Divide, Darker (only compares colors’ channel values), Lighter
(ditto), and Difference are fine to use, as long as the program you use doesn’t
do weird clipping there.

Another one is HSL, HSI and HSY algorithms. They too need to assume
something about the top value to allow scaling to white. HSV doesn’t have
this problem. So it’s best to use an HSV color selector.

For the blending modes that use HSY, there’s always the issue that they tend
to be hardcoded to sSRGB/Rec. 709 values, but are otherwise fine (and they
give actually far more correct results in a linear space). So these are not a
good idea to use with wide-gamut colorspaces, and due to the assumption
about black and white, not with scene linear painting. The following blending
modes use them:

Color

Luminosity

Saturation

Darker Color (uses luminosity to determine the color)
Lighter Color (Ditto)

So that is the blending modes. Many filters suffer from similar issues, and in
many applications, filters aren’t adjusted to work with arbitrary whites.

Speaking of filters, when using the transform tool, you should also avoid
using lanczos3, it’ll give a weird black halo to sharp contrasts in scene-linear.
The bilinear interpolation filter will work just fine in this case.

The second big problem is that black doesn’t work quite the same.

If you have mixed pigments before, you will know that black can quite easily
overpower the other colors, so you should only add the tiniest amount of it to
a mixture. White in contrast gets dirtied quite easily.

In a Scene Linear Color space, this is flipped. White is now more
overpowering and black gets washed out super quickly. This relates to the
additive nature of digital color theory, that becomes more obvious when
working in linear.

This makes sketching a bit different, after all, it’s really difficult to make
marks now. To get around this, you can do the following:

e Sketch on a mid-gray background. This is recommended anyway, as it
serves as a neutral backdrop. For a linear space, 18% or 22% gray would
be a good neutral.

e Make a special brush that is more opaque than the regular sketching
brushes you use.

e Or conversely, sketch with white instead.

e For painting, block out the shapes with a big opaque brush before you
start doing your mixing.

Overall, this is something that will take a little while getting used to, but you
will get used to it soon enough.

Finally, there’s the issue of size.

16 bit float per channel images are big. 32 bit float per channel images are
bigger. This means that they will eat RAM and that painting and filtering will
be slower. This is something that will fix itself over the years, but not many
people have such a high-end PC yet, so it can be a blocker.

So the issues are tools, expectations and size.

In Summary

Scene Linear Painting is painting an image in a color space that is linear and
has a floating point bit depth. This does not assume anything about the values
of black and white, so you can only use tools that don’t assume anything
about the values of black and white. It has the advantage of having nicer filter
results and better color mixtures as well as better interoperability with other
scene-linear output.

To be able to view such an image you use a view transform, also called a
display conversion. Which means that if you wish to finalize your image for
the web, you make a copy of the image that goes through a display
conversion or view transform that then gets saved to PNG, JPEG or TIFF.

Getting to actual painting

Now we’ve covered the theory, let us look at a workflow for painting scene
linear.

Setting up the Canvas

Select either a 16bit or 32bit image. By default Krita will select a linear
sRGB profile. If you want to create images for HDR display, you will need to
make sure that the profile selected is the Rec2020-elle-V4-g10.icc profile.
HDR images are standardised to use the Rec. 2020 gamut, which is much
larger than sRGB in size, so this ensures you’ve got access to all the colors.

If you’re working on a non-HDR enabled monitor, you should enable OCIO
in the LUT docker.

Keep in mind everything mentioned above. Not all filters and not all blending
modes work. This will improve in the future. Other than that, everything else
is the same.

Picking really bright colors

Picking regular colors is easy, but how do we pick the really bright colors?
There are three ways of getting access to the really bright colors in Krita:

1. By lowering the exposure in the LUT docker. This will increase the

visible range of colors in the color selectors. You can even hotkey the

exposure in the canvas input settings.

By setting the nits slider in the Small Color Selector higher than 100.

3. Or simply by opening the internal color selector by double clicking the
dual color button and typing in values higher than 1 into the input field.

4. And finally by picking a really bright color from an image that has such

N

values.

Then paint. It’s recommended to make a bunch of swatches in the corner, at
the least, until Krita’s new Palette docker allows you to save the values

properly.
Lighting based workflow

So, we have our typical value based workflow, where we only paint the grays
of the image so that we can focus on the values of the image. We can do
something similar with Scene Linear Painting.

Where with the value based workflow you paint the image as if it were a
grayscale of what you intended to paint, with a lighting based workflow you
paint as if all the objects are white. The effect of the color of an object can be
determined by multiplying its base color with the color of the light. So you
could paint objects as if they were white, paint the colors on a separate layer
and just use the Multiply blending mode to get the right colors.

The leftmost image is both the lighting based one and the color layer separate
two layers multiplied and the right a luminosity based view. This cat is a1
demonstrates why having textures and lighting separate could be i

You can even combine this with a value based workflow by opening a new
view and setting the component to luminosity. That way you can see both the
grayscale as well as the lighting based version of the image next to one

another.

The keen minded will notice that a lighting based workflow kind of
resembles the idea of a light pass and a color pass in 3d rendering. And
indeed, it is basically the same, so you can use lighting passes from 3d
renders here, just save them as EXR and import them as a layer. One of the
examples where scene linear painting simplifies combining methods.

Finishing up

When you are done, you will want to apply the view transform you have been
using to the image (at the least, if you want to post the end result on the
Internet)... This is called LUT baking and not possible yet in Krita. Therefore
you will have to save out your image in EXR and open it in either Blender or
Natron. Then, in Blender it is enough to just use the same OCIO config,
select the right values and save the result as a PNG.

For saving HDR images, check the HDR Display page.

You can even use some of Blender’s or Natron’s filters at this stage, and
when working with others, you would save out in EXR so that others can use
those.

Viewing Conditions

We mentioned viewing conditions before, but what does this have to do with
‘white points’?

A lot actually, rather, white points describe a type of viewing condition.

So, usually what we mean by viewing conditions is the lighting and
decoration of the room that you are viewing the image in. Our eyes try to
make sense of both the colors that you are looking at actively (the colors of
the image) and the colors you aren’t looking at actively (the colors of the
room), which means that both sets of colors affect how the image looks.

Left: Let’s ruin Vermeer by putting a bright purple background that asks for
the famous painting itself. Center: a much more neutral backdrop that an inte
hate but brings out the colors. Right: The approximate color that this painting
in real life in the Maurits House, at the least, last time I was there. Original ir

Ccommons.

This is for example, the reason why museum exhibitioners can get really
angry at the interior decorators when the walls of the museum are painted
bright red or blue, because this will drastically change the way how the
painting’s colors look. (Which, if we are talking about a painter known for
their colors like Vermeer, could result in a really bad experience).

Lighting is the other component of the viewing condition which can have
dramatic effects. Lighting in particular affects the way how all colors look.
For example, if you were to paint an image of sunflowers and poppies, print
that out, and shine a bright yellow light on it, the sunflowers would become
indistinguishable from the white background, and the poppies would look
orange. This is called metamerism
[https://en.wikipedia.org/wiki/Metamerism_%28color%29], and it’s generally something
you want to avoid in your color management pipeline.

An example where metamerism could become a problem is when you start
matching colors from different sources together.

https://en.wikipedia.org/wiki/Metamerism_%28color%29

For example, if you are designing a print for a red t-shirt that’s not bright red,
but not super grayish red either. And you want to make sure the colors of the
print match the color of the t-shirt, so you make a dummy background layer
that is approximately that red, as correctly as you can observe it, and paint on
layers above that dummy layer. When you are done, you hide this dummy
layer and sent the image with a transparent background to the press.

But when you get the t-shirt from the printer, you notice that all your colors
look off, mismatched, and maybe too yellowish (and when did that T-Shirt
become purple?).

This is where white points come in.

You probably observed the t-shirt in a white room where there were
incandescent lamps shining, because as a true artist, you started your work in
the middle of the night, as that is when the best art is made. However,
incandescent lamps have a black body temperature of roughly 2300-2800K,
which makes them give a yellowish light, officially called White Point A.

Your computer screen on the other hand, has a black body temperature of
6500K, also known as D65. Which is a far more blueish color of light than
the lamps you are hanging.

What’s worse, Printers print on the basis of using a white point of D50, the
color of white paper under direct sunlight.

So, by eye-balling your t-shirt’s color during the evening, you took its red
color as transformed by the yellowish light. Had you made your observation
in diffuse sunlight of an overcast (which is also roughly D65), or made it in
direct sunlight light and painted your picture with a profile set to D50, the
color would have been much closer, and thus your design would not be as
yellowish.

Applying a white balance filter will sort of match the colors to
the tone as in the middle, but you would have had a much
better design had you designed against the actual color to

begin with.

Now, you could technically quickly fix this by using a white balancing filter,
like the ones in G’MIC, but because this error is caught at the end of the
production process, you basically limited your use of possible colors when
you were designing, which is a pity.

Another example where metamerism messes things up is with screen
projections.

We have a presentation where we mark one type of item with red, another
with yellow and yet another with purple. On a computer the differences
between the colors are very obvious.

@

LN

—p—

However, when we start projecting, the lights of the room aren’t dimmed,
which means that the tone scale of the colors becomes crunched, and yellow

becomes near indistinguishable from white. Furthermore, because the light in
the room is slightly yellowish, the purple is transformed into red, making it
indistinguishable from the red. Meaning that the graphic is difficult to read.

In both cases, you can use Krita’s color management a little to help you, but
mostly, you just need to be “’aware’’ of it, as Krita can hardly fix that you are
looking at colors at night, or the fact that the presentation hall owner refuses
to turn off the lights.

That said, unless you have a display profile that uses LUTs, such as an OCIO
LUT or a cLUT ICC profile, white point won’t matter much when choosing a
working space, due to weirdness in the ICC v4 workflow which always
converts matrix profiles with relative colorimetric, meaning the white points
are matched up.

File Formats

This category is for graphics file-formats. While most file-formats can be
looked up on wikipedia, this doesn’t always explain what the format can be
used for and what its strengths and weaknesses are.

In this category we try to describe these in a manner that can be read by
beginners.

Generally, there are the following features that people pay attention to in
regards to file formats:

Compression

Compression is how the file-format tries to describe the image with as little
data as possible, so that the resulting file is as small as it can get without
losing quality.

What we generally see is that formats that are small on disk either lose image
quality, or require the computer to spend a lot of time thinking about how the
image should look.

Vector file-formats like SVG are a typical example of the latter. They are
really small because the technology used to create them is based on
mathematics, so it only stores maths-variables and can achieve very high
quality. The downside is that the computer needs to spend a lot of time
thinking about how it should look, and sometimes different programs have
different ways of interpreting the values. Furthermore, vector file-formats
imply vector graphics, which is a very different way of working than Krita is
specialized in.

Lossy file formats, like JPG or WebP are an example of small on disk, but
lowering the quality, and are best used for very particular types of images.
Lossy thus means that the file format plays fast and loose with describing
your image to reduce filesize.

Non-lossy or lossless formats, like PNG, GIF or BMP are in contrast, much
heavier on disk, but much more likely to retain quality.

Then, there’s proper working file formats like Krita’s KRA, Gimp’s XCF,
Photoshop’s PsD, but also interchange formats like ORA and EXR. These are the
heaviest on the hard-drive and often require special programs to open them
up, but on the other hand these are meant to keep your working environment
intact, and keep all the layers and guides in them.

Metadata

Metadata is the ability of a file format to contain information outside of the
actual image contents. This can be human readable data, like the date of
creation, the name of the author, a description of the image, but also
computer readable data, like an ICC profile which tells the computer about
the qualities of how the colors inside the file should be read.

Openness

This is a bit of an odd quality, but it’s about how easy it to open or recover
the file, and how widely it’s supported.

Most internal file formats, like PSD are completely closed, and it’s really
difficult for human outsiders to recover the data inside without opening
Photoshop. Other examples are camera raw files which have different
properties per camera manufacturer.

SVG, as a vector file format, is on the other end of the spectrum, and can be
opened with any text-editor and edited.

Most formats are in-between, and thus there’s also a matter of how widely
supported the format is. JPG and PNG cannot be read or edited by human
eyes, but the vast majority of programs can open them, meaning the owner
has easy access to them.

Contents:

Lossy and Lossless Image Compression

*.bmp

.bmp, or Bitmap, is the simplest raster file format out there, and, being patent-
free, most programs can open and save bitmap files.

However, most programs don’t compress bitmap files, leading to BMP
having a reputation for being very heavy. If you need a lossless file format,
we actually recommend *.png.

*.cSV

.csv is the abbreviation for Comma Separated Values. It is an open, plain
text spreadsheet format. Since the CSV format is a plain text itself, it is

possible to use a spreadsheet program or even a text editor to edit the *.csv
file.

Krita supports the CSV version used by TVPaint, to transfer layered
animation between these two softwares and probably with others, like
Blender. This is not an image sequence format, so use the document loading
and saving functions in Krita instead of the Import animation frames and
Render Animation menu items.

The format consists of a text file with .csv extension, together with a folder
under the same name and a . frames extension. The CSV file and the folder
must be on the same path location. The text file contains the parameters for
the scene, like the field resolution and frame rate, and also contains the
exposure sheet for the layers. The folder contains *.png picture files. Unlike
image sequences, a key frame instance is only a single file and the exposure
sheet links it to one or more frames on the timeline.

Erame Count | Layer Count | Frame Rate | Pivel Agpect Ratio | Field Mode
1920 1O 16 2| 24000000 | 1000000 Progressive

Tram e 001 -0, pavy
Traum e 001 -0, pivgy
Tram e~ 00002 pawg fram e0] D000, prg
Traum e - e 02 piwy fraum Qe -0e0e00. prg
From oW LA e Srom s OO nees

A .csv file as a spreadsheet in LibreOffice Calc.

Krita can both export and import this format. It is recommended to use 8bit

sRGB color space because that’s the only color space for TVPaint. Layer
groups and layer masks are also not supported.

TVPaint can only export this format by itself. In TVPaint 11, use the Export
to... option of the File menu, and on the upcoming Export footage window,
use the Clip: Layers structure tab.

Project: Display Clip: Display Clip: Layers structure ¢ystom Brush: Display

Browse Mmepaintlntitied cav

Exporting into .csv in TVPaint.

To import this format back into TVPaint there is a George language script
extension. See the “Packs, Plugins, Third party” section on the TVPaint
community forum for more details and also if you need support for other
softwares. Moho/Anime Studio and Blender also have plugins to import this
format.

See also

e CSV import script for TV Paint [https:/forum.tvpaint.com/viewtopic.php?
f=26&t=9759].

e CSV import script for Moho/Anime Studio
[https://forum.tvpaint.com/viewtopic.php?f=26&t=10050].

e CSV import script for Blender [https://developer.blender.org/T47462].

https://forum.tvpaint.com/viewtopic.php?f=26&t=9759
https://forum.tvpaint.com/viewtopic.php?f=26&t=10050
https://developer.blender.org/T47462

* exr

.exr is the prime file format for saving and loading floating point bit depths,
and due to the library made to load and save these images being fully open
source, the main interchange format as well.

Floating point bit-depths are used by the computer graphics industry to record
scene referred values, which can be made via a camera or a computer
renderer. Scene referred values means that the file can have values whiter
than white, which in turn means that such a file can record lighting
conditions, such as sunsets very accurately. These EXR files can then be used
inside a renderer to create realistic lighting.

Krita can load and save EXR for the purpose of paint-over (yes, Krita can
paint with scene referred values) and interchange with applications like
Blender, Mari, Nuke and Natron.

*.gbr

The GIMP brush format. Krita can open, save and use these files as
predefined brushes.

There’s three things that you can decide upon when exporting a *.gbr:

Name
This name is different from the file name, and will be shown inside Krita
as the name of the brush.

Spacing
This sets the default spacing.

Use color as mask
This’ll turn the darkest values of the image as the ones that paint, and the

whitest as transparent. Untick this if you are using colored images for the
brush.

GBR brushes are otherwise unremarkable, and limited to 8bit color precision.

* gif

.gif is a file format mostly known for the fact that it can save animations.
It’s a fairly old format, and it does its compression by indexing the colors to a
maximum of 256 colors per frame. Because we can technically design an
image for 256 colors and are always able save over an edited GIF without
any kind of extra degradation, this is a lossless compression technique.

This means that it can handle most grayscale images just fine and without
losing any visible quality. But for color images that don’t animate it might be

better to use *.jpg or *.png.

*.gih

The GIMP image hose format. Krita can open and save these, as well as
import via the predefined brush tab.

Image Hose means that this file format allows you to store multiple images
and then set some options to make it specify how to output the multiple
images.

P v

From top to bottom: Incremental, Pressure and Random

Dimension and ranks.

The GIMP image hose format allows multiple dimensions for a given brush.
You could for example have a dimension that updates incrementally, and one
that updates on pressure, or updates randomly. Upon export, Krita will use
the ranks to subdivide the layers per dimension. If you have a 24 layer image
and three ranks, and the first dimension is set to 2, the second to 4 and the
third to 3, then Krita will divide 24 into 2 groups of 12, each of which have
unique images for the 2 parts of the first dimension. Then those 2 groups of
12 get divided into 8 groups of 4, each of which have unique brush tips for
the four parts of the second dimension, and finally, the grouped three images
have each a unique brush for the final dimension.

So, the following image has a table where dimension 1 is unique in one of 4
numbers, while dimension 2 is unique in one of 3 shapes. So our ranks for
dimension 1 and dimension 2 need to be 4 and 3 respectively. Now, to order
the layers, you need to subdivide the table first by the first dimension, and
then by the second. So we end up with three layers each for a shape in the
second dimension but for the first number, then another three layers, each for
a shape, but then for the second number, and so forth.

| 9000
o AAAL

W1234

4 —

See the GIMP documentation [https:/docs.gimp.org/2.8/en/gimp-using-animated-
brushes.html] for a more thorough explanation.

GIMP image hose format options:

Constant
This’1l use the first image, no matter what.

Incremental
This’1l paint the image layers in sequence. This is good for images that
can be strung together to create a pattern.

Pressure
This’1l paint the images depending on pressure. This is good for brushes
imitating the hairs of a natural brush.

https://docs.gimp.org/2.8/en/gimp-using-animated-brushes.html

Random
This’ll draw the images randomly. This is good for image-collections
used in speedpainting as well as images that generate texture. Or perhaps
more graphical symbols.

Angle
This’1l use the dragging angle to determine with image to draw.

When exporting a Krita file as a . gih, you will also get the option to set the
default spacing, the option to set the name (very important for looking it up in
the UI) and the ability to choose whether or not to generate the mask from the
colors.

Use Color as Mask
This’1l turn the darkest values of the image as the ones that paint, and the

whitest as transparent. Untick this if you are using colored images for the
brush.

We have a Krita Brush tip page on how to create your own GIH brush.

*.Jpg

.jpg, -jpeg or .jpeg2000 are a family of file-formats designed to encode
photographs.

Photographs have the problem that they have a lot of little gradients, which
means that you cannot index the file like you can with *.gif and expect the
result to look good. What JPEG instead does is that it converts the file to a
perceptual color space (YCrCb), and then compresses the channels that
encode the colors, while keeping the channel that holds information about the
relative lightness uncompressed. This works really well because human eye-
sight is not as sensitive to colorfulness as it is to relative lightness. JPEG also
uses other lossy compression techniques, like using cosine waves to describe
image contrasts.

However, it does mean that JPEG should be used in certain cases. For images
with a lot of gradients, like full scale paintings, JPEG performs better than

*.png and *.gif.

But for images with a lot of sharp contrasts, like text and comic book styles,
PNG is a much better choice despite a larger file size. For grayscale images,
*.png and *.gif will definitely be more efficient.

Because JPEG uses lossy compression, it is not advised to save over the same
JPEG multiple times. The lossy compression will cause the file to reduce in
quality each time you save it. This is a fundamental problem with lossy
compression methods. Instead use a lossless file format, or a working file
format while you are working on the image.

* kpl

Since 4.0, Krita has a new palette file-format that can handle colors that are
wide gamut, RGB, CMYK, XYZ, GRAY, or LAB, and can be of any of the
available bitdepths, as well as groups. These are Krita Palettes, or *. kpl.

* . kpl files are ZIP files, with two XMLs and ICC profiles inside. The
colorset.xml file contains the swatches as ColorSetEntry and Groups as
Group. The profiles.xml file contains a list of profiles, and the ICC profiles
themselves are embedded to ensure compatibility over different computers.

* kra

.kra is Krita’s internal file-format, which means that it is the file format that
saves all of the features Krita can handle. It’s construction is vaguely based
on the open document standard, which means that you can rename your . kra
file to a .zip file and open it up to look at the insides.

It is a format that you can expect to get very heavy, and isn’t meant for
sharing on the internet.

*.ora

.ora, or the Open Raster format, is an interchange format. It was designed to
replace *.psd as an interchange format, as the latter isn’t meant for that. Like
*.kra it is loosely based on the Open Document structure, thus a ZIP file with
a bunch of XMLs and PNGs, but where Krita’s internal file format can
sometimes have fully binary chunks, .ora saves its layers as *.png making it
fully open and easy to support.

As an interchange format, it can be expected to be heavy and isn’t meant for
uploading to the internet.

See also

Open Raster Sj yecification [https://www.openraster.org/]

https://www.openraster.org/

*.pbm, *.pgm and *.ppm

.pbm, .pgm and . ppm are a series of file-formats with a similar logic to them.
They are designed to save images in a way that the result can be read as an
ASCII file, from back when email clients couldn’t read images reliably.

They are very old file formats, and not used outside of very specialized
usecases, such as embedding images inside code.

.pbm
One-bit and can only show strict black and white.

.pgm
Can show 255 values of gray (8bit).

.ppm
Can show 8bit rgb values.

* pdf

.pdf is a format intended for making sure a document looks the same on all
computers. It became popular because it allows the creator to make sure that
the document looks the same and cannot be changed by viewers. These days
it is an open standard and there is quite a variety of programs that can read
and save PDFs.

Krita can open PDFs with multiple layers. There is currently no PDF export,
nor is that planned. If you want to create a PDF with images from Krita, use
Scribus [https://www.scribus.net/].

While PDFs can be viewed via most browsers, they can also become very
heavy and are thus not recommended outside of official documents.
Printhouses will often accept PDF.

https://www.scribus.net/

*.png

.png, or Portable Network Graphics, is a modern alternative to *.gif and with
that and *.jpg it makes up the three main formats that are widely supported
on the internet.

PNG is a lossless file format, which means that it is able to maintain all the
colors of your image perfectly. It does so at the cost of the file size being big,
and therefore it is recommended to try *.jpg for images with a lot of gradients
and different colors. Grayscale images will do better in PNG as well as
images with a lot of text and sharp contrasts, like comics.

Like *.gif, PNG can support indexed color. Unlike *.gif, PNG doesn’t
support animation. There have been two attempts at giving animation support
to PNG, APNG and MNG, the former is unofficial and the latter too
complicated, so neither have really taken off yet.

New in version 4.2: Since 4.2 we support saving HDR to PNG as according
to the W3C PQ HDR PNG standard [https://www.w3.org/TR/png-hdr-pq/]. TO save as
such files, toggle Save as HDR image (Rec. 2020 PQ), which will convert
your image to the Rec 2020 PQ color space and then save it as a special HDR
PNG.

https://www.w3.org/TR/png-hdr-pq/

*.psd

.psd is Photoshop’s internal file format. For some reason, people like to use
it as an interchange format, even though it is not designed for this.

.psd, unlike actual interchange formats like *.pdf, *.tiff, *.exr, *.ora and
*.svg doesn’t have an official spec online. Which means that it needs to be
reverse engineered. Furthermore, as an internal file format, it doesn’t have
much of a philosophy to its structure, as it’s only purpose is to save what
Photoshop is busy with, or rather, what all the past versions of Photoshop
have been busy with. This means that the inside of a PSD looks somewhat
like Photoshop’s virtual brains, and PSD is in general a very disliked file-
format.

Due to .psd being used as an interchange format, this leads to confusion
amongst people using these programs, as to why not all programs support
opening these. Sometimes, you might even see users saying that a certain
program is terrible because it doesn’t support opening PSDs properly. But as
PSD is an internal file-format without online specs, it is impossible to have
any program outside it support it 100%.

Krita supports loading and saving raster layers, blending modes, layerstyles,
layer groups, and transparency masks from PSD. It will likely never support
vector and text layers, as these are just too difficult to program properly.

We recommend using any other file format instead of PSD if possible, with a
strong preference towards *.ora or *.tiff.

As a working file format, PSDs can be expected to become very heavy and
most websites won’t accept them.

*.svg

.svg, or Scalable Vector Graphics, is the most modern vector graphics
interchange file format out there.

Being vector graphics, SVG is very light weight. This is because it usually
only stores coordinates and parameters for the maths involved with vector
graphics.

It is maintained by the W3C SVG working group, who also maintain other
open standards that make up our modern internet.

While you can open up SVG files with any text-editor to edit them, it is best
to use a vector program like Inkscape. Krita 2.9 to 3.3 supports importing
SVG via the add shape docker. Since Krita 4.0, SVGs can be properly
imported, and you can export singlevector layers via Layer » Import/Export »
Save Vector Layer as SVG... menu item. For 4.0, Krita will also use SVG to
save vector data into its internal format.

SVG is designed for the internet, though sadly, because vector graphics are
considered a bit obscure compared to raster graphics, not a lot of websites
accept them yet. Hosting them on your own webhost works just fine though.

* uff

.tiff, or Tagged Image File Format, is a raster interchange format that was
originally designed to be a common format generated by scanners and used
by printers.

It can support multiple color spaces, and even layers. However, the latter is a
bit odd, as the official specs, owned by Adobe, have a different way of saving
layers to TIFF than Photoshop, also owned by Adobe.

As an interchange format, . tiff is not meant for sharing on the internet, and
you will not find many websites that do accept it. However, printhouses
know the file format, and will likely accept it.

Lossy and Lossless Image
Compression

When we compress a file, we do this because we want to temporarily make it
smaller (like for sending over email), or we want to permanently make it
smaller (like for showing images on the internet).

Lossless compression techniques are for when we want to temporarily reduce
information. As the name implies, they compress without losing information.
In text, the use of abbreviations is a good example of a lossless compression
technique. Everyone knows ‘etc.” expands to ‘etcetera’, meaning that you can
half the 8 character long ‘etcetera’ to the four character long ‘etc.’.

Within image formats, examples of such compression is by for example
‘indexed’ color, where we make a list of available colors in an image, and
then assign a single number to them. Then, when describing the pixels, we
only write down said number, so that we don’t need to write the color
definition over and over.

Lossy compression techniques are for when we want to permanently reduce
the file size of an image. This is necessary for final products where having a
small filesize is preferable such as a website. That the image will not be
edited anymore after this allows for the use of the context of a pixel to be
taken into account when compressing, meaning that we can rely on
psychological and statistical tric